Foxglove_7B / README.md
rmdhirr's picture
Update README.md
9a81d41 verified
|
raw
history blame
2.35 kB
metadata
tags:
  - merge
  - mergekit
  - lazymergekit
  - mistral
  - ResplendentAI/Datura_7B
  - Epiculous/Mika-7B
base_model:
  - ResplendentAI/Datura_7B
  - Epiculous/Mika-7B
language:
  - en
library_name: transformers
license: apache-2.0
favicon Foxglove_7B
image Foxglove is a well-rounded RP model. It is smart, does a great job of sticking to character card, and is proficient at following desired markdown.

Foxglove_7B is a merge of the following models using LazyMergekit:

🧩 Configuration

slices:
  - sources:
      - model: ResplendentAI/Datura_7B
        layer_range: [0, 32]
      - model: Epiculous/Mika-7B
        layer_range: [0, 32]
merge_method: slerp
base_model: ResplendentAI/Datura_7B
parameters:
  t:
    - filter: self_attn
      value: [0, 0.7, 0.4, 0.6, 1]  
    - filter: mlp
      value: [0.8, 0.5, 0.7, 0.3, 0]  
    - value: 0.6  
dtype: bfloat16

💻 Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "rmdhirr/Foxglove_7B"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])