Foxglove_7B / README.md
rmdhirr's picture
Update README.md
c8439a4 verified
|
raw
history blame
2.2 kB
---
tags:
- merge
- mergekit
- lazymergekit
- mistral
- ResplendentAI/Datura_7B
- Epiculous/Mika-7B
base_model:
- ResplendentAI/Datura_7B
- Epiculous/Mika-7B
language:
- en
library_name: transformers
license: apache-2.0
---
<div style="margin-bottom: -40px; margin-top: -30px;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/65ad2502043d53781aad2ee4/ZrffOEBz2rxwAwdgzOkhd.png" alt="favicon" style="display: inline-block; vertical-align: middle; width: 25px; height: 25px; margin-right: 10px;">
<span style="display: inline-block; vertical-align: middle; font-weight: 600; font-size: 20px;">Foxglove_7B</span>
</div>
<img src="https://cdn-uploads.huggingface.co/production/uploads/65ad2502043d53781aad2ee4/FUH__CjalqBRPiSaqZfO6.png" alt="image" width="540" height="540" style="margin-bottom: -10px;">
Foxglove_7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [ResplendentAI/Datura_7B](https://huggingface.co/ResplendentAI/Datura_7B)
* [Epiculous/Mika-7B](https://huggingface.co/Epiculous/Mika-7B)
## 🧩 Configuration
```yaml
slices:
- sources:
- model: ResplendentAI/Datura_7B
layer_range: [0, 32]
- model: Epiculous/Mika-7B
layer_range: [0, 32]
merge_method: slerp
base_model: ResplendentAI/Datura_7B
parameters:
t:
- filter: self_attn
value: [0, 0.7, 0.4, 0.6, 1]
- filter: mlp
value: [0.8, 0.5, 0.7, 0.3, 0]
- value: 0.6
dtype: bfloat16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "aridoverrun/Foxglove_7B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```