|
--- |
|
tags: |
|
- merge |
|
- mergekit |
|
- lazymergekit |
|
- mistral |
|
- ResplendentAI/Datura_7B |
|
- Epiculous/Mika-7B |
|
base_model: |
|
- ResplendentAI/Datura_7B |
|
- Epiculous/Mika-7B |
|
language: |
|
- en |
|
library_name: transformers |
|
license: apache-2.0 |
|
--- |
|
<div style="margin-bottom: -40px; margin-top: -30px;"> |
|
<img src="https://cdn-uploads.huggingface.co/production/uploads/65ad2502043d53781aad2ee4/ZrffOEBz2rxwAwdgzOkhd.png" alt="favicon" style="display: inline-block; vertical-align: middle; width: 25px; height: 25px; margin-right: 10px;"> |
|
<span style="display: inline-block; vertical-align: middle; font-weight: 600; font-size: 20px;">Foxglove_7B</span> |
|
</div> |
|
|
|
<img src="https://cdn-uploads.huggingface.co/production/uploads/65ad2502043d53781aad2ee4/FUH__CjalqBRPiSaqZfO6.png" alt="image" width="540" height="540" style="margin-bottom: -10px;"> |
|
|
|
Foxglove_7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): |
|
* [ResplendentAI/Datura_7B](https://huggingface.co/ResplendentAI/Datura_7B) |
|
* [Epiculous/Mika-7B](https://huggingface.co/Epiculous/Mika-7B) |
|
|
|
## 🧩 Configuration |
|
|
|
```yaml |
|
slices: |
|
- sources: |
|
- model: ResplendentAI/Datura_7B |
|
layer_range: [0, 32] |
|
- model: Epiculous/Mika-7B |
|
layer_range: [0, 32] |
|
merge_method: slerp |
|
base_model: ResplendentAI/Datura_7B |
|
parameters: |
|
t: |
|
- filter: self_attn |
|
value: [0, 0.7, 0.4, 0.6, 1] |
|
- filter: mlp |
|
value: [0.8, 0.5, 0.7, 0.3, 0] |
|
- value: 0.6 |
|
dtype: bfloat16 |
|
``` |
|
|
|
## 💻 Usage |
|
|
|
```python |
|
!pip install -qU transformers accelerate |
|
|
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
|
|
model = "aridoverrun/Foxglove_7B" |
|
messages = [{"role": "user", "content": "What is a large language model?"}] |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
) |
|
|
|
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
``` |