llama-2-7b-chat-marlin
Example of converting a GPTQ model to Marlin format for fast batched decoding with Marlin Kernels
Install Marlin
pip install torch
git clone https://github.com/IST-DASLab/marlin.git
cd marlin
pip install -e .
Convert Model
Convert the model from GPTQ to Marlin format. Note that this requires:
sym=true
group_size=128
desc_activations=false
pip install -U transformers accelerate auto-gptq optimum
Convert with the convert.py
script in this repo:
python3 convert.py --model-id "TheBloke/Llama-2-7B-Chat-GPTQ" --save-path "./marlin-model" --do-generation
Run Model
Load with the load.load_model
utility from this repo and run inference as usual.
from load import load_model
from transformers import AutoTokenizer
# Load model from disk.
model_path = "./marlin-model"
model = load_model(model_path).to("cuda")
tokenizer = AutoTokenizer.from_pretrained(model_path)
# Generate text.
inputs = tokenizer("My favorite song is", return_tensors="pt")
inputs = {k: v.to("cuda") for k, v in inputs.items()}
outputs = model.generate(**inputs, max_new_tokens=50, do_sample=False)
print(tokenizer.batch_decode(outputs)[0])
- Downloads last month
- 9
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.