Edit model card

Built with Axolotl

See axolotl config

axolotl version: 0.4.1

base_model: mistralai/Mistral-7B-v0.1
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer

load_in_8bit: false
load_in_4bit: true
strict: false

chat_template: chatml

datasets:
  - path: /home/paniv/Projects/ualpaca2.json
    type: chat_template
    chat_template: chatml
    field_messages: conversations
    message_field_role: role
    message_field_content: content
    roles:
      user:
        - user
      assistant:
        - assistant


dataset_prepared_path: last_run_prepared
shuffle_merged_datasets: true
val_set_size: 0.02
output_dir: ./outputs/lora-out

adapter: qlora
lora_model_dir:

sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true

lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
  - gate_proj
  - down_proj
  - up_proj
  - q_proj
  - v_proj
  - k_proj
  - o_proj

wandb_project: UAlpaca2
wandb_entity:
wandb_watch:
wandb_name: full_train
wandb_log_model:

gradient_accumulation_steps: 4
micro_batch_size: 5
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: true
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3

warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
eval_sample_packing: false
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:

Visualize in Weights & Biases

outputs/lora-out

This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5696

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 5
  • eval_batch_size: 5
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 40
  • total_eval_batch_size: 10
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
1.3714 0.0091 1 2.5733
1.1049 0.2551 28 0.6542
1.0633 0.5103 56 0.5824
1.0023 0.7654 84 0.5696

Framework versions

  • PEFT 0.11.1
  • Transformers 4.42.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1

Attribution

ELEKS supported this project through a grant dedicated to the memory of Oleksiy Skrypnyk.

Downloads last month
217
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for robinhad/UAlpaca-2.0-Mistral-7B

Adapter
(1171)
this model

Dataset used to train robinhad/UAlpaca-2.0-Mistral-7B

Space using robinhad/UAlpaca-2.0-Mistral-7B 1