SentenceTransformer based on meta-llama/Llama-3.2-1B
This is a sentence-transformers model finetuned from meta-llama/Llama-3.2-1B. It maps sentences & paragraphs to a 2048-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: meta-llama/Llama-3.2-1B
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 2048 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: LlamaModel
(1): Pooling({'word_embedding_dimension': 2048, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("roboepicss/merged_product_stage_1_llama1B")
# Run inference
sentences = [
'The weather is lovely today.',
"It's so sunny outside!",
'He drove to the stadium.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 2048]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
ir
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.7918 |
cosine_accuracy@3 | 0.9296 |
cosine_accuracy@5 | 0.9589 |
cosine_accuracy@10 | 0.9825 |
cosine_precision@1 | 0.7918 |
cosine_precision@3 | 0.3099 |
cosine_precision@5 | 0.1918 |
cosine_precision@10 | 0.0983 |
cosine_recall@1 | 0.0855 |
cosine_recall@3 | 0.1003 |
cosine_recall@5 | 0.1035 |
cosine_recall@10 | 0.106 |
cosine_ndcg@10 | 0.2064 |
cosine_mrr@10 | 0.8654 |
cosine_map@100 | 0.0935 |
dot_accuracy@1 | 0.7918 |
dot_accuracy@3 | 0.9296 |
dot_accuracy@5 | 0.9589 |
dot_accuracy@10 | 0.9825 |
dot_precision@1 | 0.7918 |
dot_precision@3 | 0.3099 |
dot_precision@5 | 0.1918 |
dot_precision@10 | 0.0983 |
dot_recall@1 | 0.0855 |
dot_recall@3 | 0.1003 |
dot_recall@5 | 0.1035 |
dot_recall@10 | 0.106 |
dot_ndcg@10 | 0.2064 |
dot_mrr@10 | 0.8654 |
dot_map@100 | 0.0935 |
Training Details
Training Logs
Epoch | Step | ir_cosine_map@100 |
---|---|---|
0 | 0 | 0.0935 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.0
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.1
- Tokenizers: 0.19.1
Citation
BibTeX
- Downloads last month
- 58
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for roboepicss/merged_product_stage_1_llama1B
Base model
meta-llama/Llama-3.2-1BEvaluation results
- Cosine Accuracy@1 on irself-reported0.792
- Cosine Accuracy@3 on irself-reported0.930
- Cosine Accuracy@5 on irself-reported0.959
- Cosine Accuracy@10 on irself-reported0.983
- Cosine Precision@1 on irself-reported0.792
- Cosine Precision@3 on irself-reported0.310
- Cosine Precision@5 on irself-reported0.192
- Cosine Precision@10 on irself-reported0.098
- Cosine Recall@1 on irself-reported0.085
- Cosine Recall@3 on irself-reported0.100