Upload openvla-7b+example_dataset+b16+lr-0.0005+lora-r32+dropout-0.0--image_aug+example_dataset+b16+lr-0.0005+lora-r32+dropout-0.0--image_aug/processing_prismatic.py
e138f8b
verified
""" | |
processing_prismatic.py | |
HuggingFace-style preprocessor definitions for Prismatic VLMs, inheriting from `ProcessorMixin`. Default configuration | |
specifies `siglip-224px+7b`. | |
""" | |
from typing import Any, ClassVar, List, Optional, Tuple, Union | |
import timm.data | |
import torch | |
import torchvision.transforms.functional as TVF | |
from PIL import Image | |
from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor | |
from transformers import PreTrainedTokenizerBase | |
from transformers.image_processing_utils import BatchFeature, ImageProcessingMixin | |
from transformers.processing_utils import ProcessorMixin | |
from transformers.tokenization_utils import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy | |
from transformers.utils import TensorType | |
# === Image Processing === | |
def letterbox_pad_transform(image: Image.Image, padding_fill_value: Tuple[int, int, int]) -> Image.Image: | |
"""Given a PIL.Image, pad to square by adding a symmetric border around the height/width.""" | |
(w, h), max_wh = image.size, max(image.size) | |
horizontal_pad, vertical_pad = int((max_wh - w) / 2), int((max_wh - h) / 2) | |
padding = (horizontal_pad, vertical_pad, horizontal_pad, vertical_pad) | |
return TVF.pad(image, padding, fill=padding_fill_value, padding_mode="constant") | |
class PrismaticImageProcessor(ImageProcessingMixin): | |
model_input_names: ClassVar[List[str]] = ["pixel_values"] | |
def __init__( | |
self, | |
use_fused_vision_backbone: bool = False, | |
image_resize_strategy: str = "letterbox", | |
input_sizes: Optional[List[Tuple[int, int, int]]] = None, | |
interpolations: Optional[List[str]] = None, | |
means: Optional[List[Tuple[float, float, float]]] = None, | |
stds: Optional[List[Tuple[float, float, float]]] = None, | |
**kwargs: str, | |
) -> None: | |
""" | |
Initialize a PrismaticImageProcessor as a wrapper around a torchvision transform; this transform will be | |
created by TIMM, and edited to follow our custom `image_resize_strategy` logic. | |
@param use_fused_vision_backbone: Boolean indicating single or fused (dual) vision backbone | |
@param image_resize_strategy: Prismatic image resize strategy in < resize-naive | resize-crop | letterbox > | |
@param input_size: [TIMM :: `data_cfg`] Input image size as tuple (channels, width, height) | |
@param interpolation: [TIMM :: `data_cfg`] Interpolation as string (default: "bicubic") | |
@param mean: [TIMM :: `data_cfg`] Normalization mean as float tuple (or two-tuple if `fused_backbone`) | |
@param std: [TIMM :: `data_cfg`] Normalization std as float tuple (or two-tuple if `fused_backbone`) | |
""" | |
self.use_fused_vision_backbone = use_fused_vision_backbone | |
self.image_resize_strategy = image_resize_strategy | |
# Handle `None` default values | |
input_sizes = [(3, 224, 224)] if input_sizes is None else input_sizes | |
means = [(0.5, 0.5, 0.5)] if means is None else means | |
stds = [(0.5, 0.5, 0.5)] if stds is None else stds | |
# TIMM `data_cfg` Parameters | |
self.input_sizes, self.interpolations, self.means, self.stds = input_sizes, interpolations, means, stds | |
# Grab torchvision transforms via TIMM =>> need to parse for specific "functional" transform values! | |
self.tvf_resize_params, self.tvf_crop_params, self.tvf_normalize_params = [], [], [] | |
self.tvf_do_letterbox, self.tvf_letterbox_fill = False, None | |
for idx in range(len(input_sizes)): | |
transform = timm.data.create_transform( | |
input_size=self.input_sizes[idx], | |
interpolation=self.interpolations[idx], | |
mean=self.means[idx], | |
std=self.stds[idx], | |
crop_pct=1.0, # Set to 1.0 to ignore cropping (initial Resize sets `input_size`) | |
crop_mode="center", # Default crop mode -- no-op when `crop_pct == 1.0` | |
is_training=False, # No image augmentations when loading the transform! | |
) | |
# [Validation] Ensure appropriate transform structure, expected sizes | |
if not ( | |
isinstance(transform, Compose) | |
and (len(transform.transforms) == 4) | |
and isinstance(transform.transforms[0], Resize) | |
and isinstance(transform.transforms[1], CenterCrop) | |
and isinstance(transform.transforms[2], ToTensor) | |
and isinstance(transform.transforms[3], Normalize) | |
and (transform.transforms[0].size == self.input_sizes[idx][-1]) | |
and (transform.transforms[1].size == self.input_sizes[idx][-2:]) | |
): | |
raise ValueError(f"Unexpected TIMM image transformation structure/sizes: `{transform}`") | |
# HF Image Processors *must* be JSON-serializable; as such, cannot have torchvision. as an attribute. | |
# => Instead, we're going to parse the transform and call "torchvision.transforms.functional" (`tvf`) | |
resize_t, crop_t, norm_t = transform.transforms[0], transform.transforms[1], transform.transforms[3] | |
self.tvf_resize_params.append( | |
{ | |
"size": resize_t.size, | |
"interpolation": TVF.pil_modes_mapping[resize_t.interpolation], | |
"max_size": None, | |
"antialias": True, | |
} | |
) | |
self.tvf_crop_params.append({"output_size": crop_t.size}) | |
self.tvf_normalize_params.append( | |
{ | |
"mean": norm_t.mean.float().numpy().tolist(), | |
"std": norm_t.std.float().numpy().tolist(), | |
"inplace": False, | |
} | |
) | |
self.tvf_do_letterbox, self.tvf_letterbox_fill = False, None | |
# Handle Prismatic `image_resize_strategy` | |
if self.image_resize_strategy == "resize-naive": | |
self.tvf_resize_params[idx]["size"] = (resize_t.size, resize_t.size) | |
elif self.image_resize_strategy == "letterbox": | |
self.tvf_do_letterbox, self.tvf_letterbox_fill = True, tuple([int(x * 255) for x in self.means[idx]]) | |
elif self.image_resize_strategy == "resize-crop": | |
pass | |
else: | |
raise ValueError(f"Image resize strategy `{self.image_resize_strategy}` is not supported!") | |
# Dispatch **kwargs to super() | |
super().__init__(**kwargs) | |
def apply_transform(self, img: Image.Image) -> torch.Tensor: | |
"""Apply `functional` variant of TIMM's Transform = Compose([Resize -> CenterCrop -> ToTensor -> Normalize])""" | |
if self.tvf_do_letterbox: | |
img = letterbox_pad_transform(img, self.tvf_letterbox_fill) | |
# [Contract] Fused Backbones expect "channel-stacked" inputs; we'll unpack on the model side! | |
imgs_t = [] | |
for idx in range(len(self.input_sizes)): | |
img_idx = TVF.resize(img, **self.tvf_resize_params[idx]) | |
img_idx = TVF.center_crop(img_idx, **self.tvf_crop_params[idx]) | |
img_idx_t = TVF.to_tensor(img_idx) | |
img_idx_t = TVF.normalize(img_idx_t, **self.tvf_normalize_params[idx]) | |
imgs_t.append(img_idx_t) | |
# [Contract] `imgs_t` is a list of Tensors of shape [3, input_size, input_size]; stack along dim = 0 | |
img_t = torch.vstack(imgs_t) | |
return img_t | |
def preprocess( | |
self, | |
images: Union[Image.Image, List[Image.Image]], | |
return_tensors: Optional[Union[str, TensorType]] = None, | |
**_: str, | |
) -> BatchFeature: | |
""" | |
Preprocess an image (or batch of images); note that unlike the `transformers :: BaseImageProcessor` we | |
explicitly only handle PIL.Image.Image instances for simplicity. | |
@param images: A (batch of) PIL.Image.Image instance(s) to preprocess. | |
@param return_tensors: BatchFeature default Tensor format (e.g., "pt" for torch); if None, returns np.ndarray | |
@return: Instance of `transformers :: BatchFeature` with a single key "pixel_values" | |
""" | |
if not isinstance(images, list): | |
images = [images] | |
# Apply `self.img_transform` to each image (will return list of torch.Tensors); stack into "batched" Tensor | |
pixel_values = torch.stack([self.apply_transform(img.convert("RGB")) for img in images]) | |
# Return BatchFeature =>> note that for compatibility, constructor expects Dict[str, np.ndarray], so we convert | |
return BatchFeature(data={"pixel_values": pixel_values.float().numpy()}, tensor_type=return_tensors) | |
def __call__(self, images: Union[Image.Image, List[Image.Image]], **kwargs) -> BatchFeature: | |
return self.preprocess(images, **kwargs) | |
# === PrismaticProcessor =>> Wraps both ImageProcessor and Tokenizer === | |
# =>> https://github.com/huggingface/transformers/blob/main/src/transformers/models/llava/processing_llava.py | |
class PrismaticProcessor(ProcessorMixin): | |
attributes: ClassVar[List[str]] = ["image_processor", "tokenizer"] | |
image_processor_class: str = "AutoImageProcessor" | |
tokenizer_class: str = "AutoTokenizer" | |
def __init__( | |
self, | |
image_processor: Optional[ImageProcessingMixin] = None, | |
tokenizer: Optional[PreTrainedTokenizerBase] = None, | |
) -> None: | |
super().__init__(image_processor, tokenizer) | |
def __call__( | |
self, | |
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]], | |
images: Union[Image.Image, List[Image.Image]], | |
padding: Union[bool, str, PaddingStrategy] = False, | |
truncation: Optional[Union[bool, str, TruncationStrategy]] = None, | |
max_length: Optional[int] = None, | |
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH, | |
) -> BatchFeature: | |
""" | |
Preprocess a given (batch) of text/images for a Prismatic VLM; forwards text to the underlying LLM's tokenizer, | |
forwards images to PrismaticImageProcessor. | |
@param text: The (batch) of text to encode; must be a string or list of strings. | |
@param images: A (batch of) PIL.Image.Image instance(s) to preprocess. | |
@param padding: Sequence padding strategy (if multiple specified) in < True = "longest" | "max_length" | False > | |
@param truncation: Truncation strategy for the output sequences; requires `max_length` to be specified | |
@param max_length: Maximum length (in tokens) to truncate | |
@param return_tensors: Type of return tensors (usually "pt" or TensorType.PYTORCH) | |
@return: BatchFeature with keys for `input_ids`, `attention_mask` and `pixel_values`. | |
""" | |
pixel_values = self.image_processor(images, return_tensors=return_tensors)["pixel_values"] | |
text_inputs = self.tokenizer( | |
text, return_tensors=return_tensors, padding=padding, truncation=truncation, max_length=max_length | |
) | |
# [Validate] Need same number of images and text inputs! | |
if pixel_values.shape[0] != text_inputs.input_ids.shape[0]: | |
raise ValueError("Batch is malformed; expected same number of images and text inputs!") | |
return BatchFeature(data={**text_inputs, "pixel_values": pixel_values}) | |
# === Tokenizer Dispatch Utilities =>> check `PreTrainedTokenizerBase` for documentation === | |
def batch_decode( | |
self, | |
sequences: Union[List[int], List[List[int]], torch.Tensor, Any], # `Any` = np.ndarray | tf.Tensor | |
skip_special_tokens: bool = False, | |
clean_up_tokenization_spaces: Optional[bool] = None, | |
**kwargs: str, | |
) -> List[str]: | |
return self.tokenizer.batch_decode( | |
sequences=sequences, | |
skip_special_tokens=skip_special_tokens, | |
clean_up_tokenization_spaces=clean_up_tokenization_spaces, | |
**kwargs, | |
) | |
def decode( | |
self, | |
token_ids: Union[int, List[int], torch.Tensor, Any], # `Any` = np.ndarray | tf.Tensor | |
skip_special_tokens: bool = False, | |
clean_up_tokenization_spaces: Optional[bool] = None, | |
**kwargs: str, | |
) -> str: | |
return self.tokenizer.decode( | |
token_ids=token_ids, | |
skip_special_tokens=skip_special_tokens, | |
clean_up_tokenization_spaces=clean_up_tokenization_spaces, | |
**kwargs, | |
) | |
def model_input_names(self) -> List[str]: | |
tokenizer_input_names = self.tokenizer.model_input_names | |
image_processor_input_names = self.image_processor.model_input_names | |
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) | |