Upload openvla-7b+example_dataset+b16+lr-0.0005+lora-r32+dropout-0.0--image_aug+example_dataset+b16+lr-0.0005+lora-r32+dropout-0.0--image_aug/configuration_prismatic.py
28d6c66
verified
""" | |
configuration_prismatic.py | |
HuggingFace-style configuration definition for Prismatic VLMs, inheriting from `transformers.PretrainedConfig`. | |
Default configuration specifies `siglip-224px+7b`. | |
""" | |
from typing import Any, Dict, List, Optional | |
from transformers import PretrainedConfig | |
from transformers.models.auto import CONFIG_MAPPING | |
# === Utilities for Mapping Prismatic names to HF names === | |
# fmt: off | |
VISION_BACKBONE_TO_RESOLUTION: Dict[str, List[int]] = { | |
"clip-vit-l": [224], "siglip-vit-so400m": [224], "dinov2-vit-l": [224], "in1k-vit-l": [224], | |
"clip-vit-l-336px": [336], | |
"siglip-vit-so400m-384px": [384], | |
"dinoclip-vit-l-336px": [336, 336], | |
"dinosiglip-vit-so-224px": [224, 224], | |
"dinosiglip-vit-so-384px": [384, 384], | |
} | |
VISION_BACKBONE_TO_TIMM_ID: Dict[str, List[str]] = { | |
"clip-vit-l": ["vit_large_patch14_clip_224.openai"], | |
"clip-vit-l-336px": ["vit_large_patch14_clip_336.openai"], | |
"dinov2-vit-l": ["vit_large_patch14_reg4_dinov2.lvd142m"], | |
"in1k-vit-l": ["vit_large_patch16_224.augreg_in21k_ft_in1k"], | |
"siglip-vit-so400m": ["vit_so400m_patch14_siglip_224"], | |
"siglip-vit-so400m-384px": ["vit_so400m_patch14_siglip_384"], | |
"dinoclip-vit-l-336px": ["vit_large_patch14_reg4_dinov2.lvd142m", "vit_large_patch14_clip_336.openai"], | |
"dinosiglip-vit-so-224px": ["vit_large_patch14_reg4_dinov2.lvd142m", "vit_so400m_patch14_siglip_224"], | |
"dinosiglip-vit-so-384px": ["vit_large_patch14_reg4_dinov2.lvd142m", "vit_so400m_patch14_siglip_384"], | |
} | |
TIMM_OVERRIDE_ACT_LAYER: Dict[str, List[Optional[str]]] = { | |
"clip-vit-l": ["quick_gelu"], "clip-vit-l-336px": ["quick_gelu"], | |
"dinov2-vit-l": [None], "in1k-vit-l": [None], | |
"siglip-vit-so400m": [None], "siglip-vit-so400m-384px": [None], | |
"dinoclip-vit-l-336px": [None, "quick_gelu"], | |
"dinosiglip-vit-so-224px": [None, None], "dinosiglip-vit-so-384px": [None, None] | |
} | |
LLM_BACKBONE_TO_HF_PATH = { | |
"llama2-7b-pure": "meta-llama/Llama-2-7b-hf", "llama2-13b-pure": "meta-llama/Llama-2-13b-hf", | |
"llama2-7b-chat": "meta-llama/Llama-2-7b-chat-hf", "llama2-13b-chat": "meta-llama/Llama-2-13b-chat-hf", | |
"vicuna-v15-7b": "lmsys/vicuna-7b-v1.5", "vicuna-v15-13b": "lmsys/vicuna-13b-v1.5", | |
"mistral-v0.1-7b-pure": "mistralai/Mistral-7B-v0.1", | |
"mistral-v0.1-7b-instruct": "mistralai/Mistral-7B-Instruct-v0.1", | |
"phi-2-3b": "microsoft/phi-2", | |
} | |
LLM_BACKBONE_TO_HF_METACLASS = { | |
"llama2-7b-pure": "llama", "llama2-13b-pure": "llama", "llama2-7b-chat": "llama", "llama2-13b-chat": "llama", | |
"vicuna-v15-7b": "llama", "vicuna-v15-13b": "llama", | |
"mistral-v0.1-7b-pure": "mistral", "mistral-v0.1-7b-instruct": "mistral", | |
"phi-2-3b": "phi", | |
} | |
VALID_VISION_BACKBONES = set(VISION_BACKBONE_TO_RESOLUTION.keys()) | |
VALID_LLM_BACKBONES = set(LLM_BACKBONE_TO_HF_PATH) | |
# fmt: on | |
class PrismaticConfig(PretrainedConfig): | |
model_type: str = "prismatic" | |
is_composition: bool = False | |
def __init__( | |
self, | |
vision_backbone_id: str = "siglip-vit-so400m", | |
llm_backbone_id: str = "vicuna-v15-7b", | |
arch_specifier: str = "no-align+gelu-mlp", | |
use_fused_vision_backbone: Optional[bool] = None, | |
image_resize_strategy: str = "letterbox", | |
text_config: Optional[Dict[str, Any]] = None, | |
llm_max_length: int = 2048, | |
pad_token_id: int = 32000, | |
pad_to_multiple_of: int = 64, | |
output_projector_states: bool = False, | |
**kwargs: str, | |
) -> None: | |
if vision_backbone_id not in VALID_VISION_BACKBONES: | |
raise ValueError(f"Vision backbone `{vision_backbone_id}` not in {VALID_VISION_BACKBONES = }") | |
if llm_backbone_id not in VALID_LLM_BACKBONES: | |
raise ValueError(f"LLM backbone `{llm_backbone_id}` not in {VALID_LLM_BACKBONES = }") | |
# Set Prismatic Configuration Fields | |
self.vision_backbone_id = vision_backbone_id | |
self.llm_backbone_id = llm_backbone_id | |
self.arch_specifier = arch_specifier | |
self.output_projector_states = output_projector_states | |
# [Contract] All vision backbone parameters are lists =>> supports fused backbones with different preprocessing | |
self.use_fused_vision_backbone = ( | |
use_fused_vision_backbone | |
if use_fused_vision_backbone is not None | |
else any(self.vision_backbone_id.startswith(v) for v in ["dinoclip", "dinosiglip"]) | |
) | |
self.timm_model_ids = VISION_BACKBONE_TO_TIMM_ID[self.vision_backbone_id] | |
self.timm_override_act_layers = TIMM_OVERRIDE_ACT_LAYER[self.vision_backbone_id] | |
self.image_sizes = VISION_BACKBONE_TO_RESOLUTION[self.vision_backbone_id] | |
self.image_resize_strategy = image_resize_strategy | |
self.hf_llm_id = LLM_BACKBONE_TO_HF_PATH[self.llm_backbone_id] | |
self.llm_max_length = llm_max_length | |
self.pad_token_id, self.pad_to_multiple_of = pad_token_id, pad_to_multiple_of | |
# [IMPORTANT] HF Utilities actually look for a `text_config` field... we need to use that specific naming! | |
self.text_config = ( | |
CONFIG_MAPPING[LLM_BACKBONE_TO_HF_METACLASS[self.llm_backbone_id]](**text_config) | |
if text_config is not None | |
else CONFIG_MAPPING[LLM_BACKBONE_TO_HF_METACLASS[self.llm_backbone_id]]() | |
) | |
# Dispatch **kwargs to super() =>> note that `pad_token_id` collides, so we pass it in here as well... | |
super().__init__(pad_token_id=pad_token_id, **kwargs) | |
class OpenVLAConfig(PrismaticConfig): | |
model_type: str = "openvla" | |
def __init__( | |
self, | |
norm_stats: Optional[Dict[str, Dict[str, Dict[str, Dict[str, List[float]]]]]] = None, | |
n_action_bins: int = 256, | |
**kwargs: str, | |
) -> None: | |
self.norm_stats, self.n_action_bins = norm_stats, n_action_bins | |
super().__init__(**kwargs) | |