roequitz's picture
End of training
f41fe56 verified
metadata
library_name: transformers
license: apache-2.0
base_model: sshleifer/distilbart-xsum-12-6
tags:
  - generated_from_trainer
model-index:
  - name: bart-abs-2409-1947-lr-0.0003-bs-8-maxep-6
    results: []

bart-abs-2409-1947-lr-0.0003-bs-8-maxep-6

This model is a fine-tuned version of sshleifer/distilbart-xsum-12-6 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 7.3898
  • Rouge/rouge1: 0.3035
  • Rouge/rouge2: 0.072
  • Rouge/rougel: 0.2428
  • Rouge/rougelsum: 0.2429
  • Bertscore/bertscore-precision: 0.8724
  • Bertscore/bertscore-recall: 0.8571
  • Bertscore/bertscore-f1: 0.8646
  • Meteor: 0.2108
  • Gen Len: 29.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 6
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge/rouge1 Rouge/rouge2 Rouge/rougel Rouge/rougelsum Bertscore/bertscore-precision Bertscore/bertscore-recall Bertscore/bertscore-f1 Meteor Gen Len
0.3901 1.0 109 6.5833 0.2377 0.0309 0.193 0.1932 0.8496 0.853 0.8512 0.2159 45.0
0.3274 2.0 218 6.5583 0.2439 0.0504 0.2065 0.2067 0.8544 0.8581 0.8562 0.229 45.0
0.3098 3.0 327 6.9294 0.2613 0.0803 0.214 0.2142 0.8711 0.8469 0.8588 0.2102 25.0
0.2625 4.0 436 7.0223 0.3008 0.0767 0.229 0.2292 0.858 0.8674 0.8626 0.2167 41.0
0.2379 5.0 545 7.2276 0.3035 0.072 0.2428 0.2429 0.8724 0.8571 0.8646 0.2108 29.0
0.2168 6.0 654 7.3898 0.3035 0.072 0.2428 0.2429 0.8724 0.8571 0.8646 0.2108 29.0

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0
  • Datasets 3.0.0
  • Tokenizers 0.19.1