File size: 1,723 Bytes
f2ed383
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8203958
 
 
 
 
f2ed383
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d9fa98
 
f2ed383
 
 
 
 
 
 
 
 
 
8203958
 
 
f2ed383
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: mit
base_model: xlm-roberta-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: xlm-roberta-base-ner-silvanus
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# xlm-roberta-base-ner-silvanus

This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1614
- Precision: 0.9454
- Recall: 0.9534
- F1: 0.9494
- Accuracy: 0.9550

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 6
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.1526        | 1.0   | 6242  | 0.1463          | 0.9328    | 0.9483 | 0.9405 | 0.9526   |
| 0.0957        | 2.0   | 12484 | 0.1250          | 0.9420    | 0.9514 | 0.9467 | 0.9663   |
| 0.0889        | 3.0   | 18726 | 0.1614          | 0.9454    | 0.9534 | 0.9494 | 0.9550   |


### Framework versions

- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1