cybertron-v4-qw7B-MGS
WE ARE BACK Cybertron v4, #1 LLM in its class. Based on the amazing Qwen2.5 7B
Scoring #1 LLM of 7B and 8B at 30.10.2024.
Here we use our novel approach called MGS
. Its up to you to figure out what it means.
Cybertron V4 went thru SFT over Magpie-Align/Magpie-Qwen2.5-Pro-1M-v0.1
MGS
Being fair:
https://arxiv.org/pdf/2410.21228
MGS, among other things.. a strategy of tackling corpora forgetful.
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 31.21 |
IFEval (0-Shot) | 62.64 |
BBH (3-Shot) | 37.04 |
MATH Lvl 5 (4-Shot) | 27.72 |
GPQA (0-shot) | 8.05 |
MuSR (0-shot) | 13.20 |
MMLU-PRO (5-shot) | 38.59 |
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 128
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.7405 | 0.0007 | 1 | 0.5760 |
0.6146 | 0.0502 | 71 | 0.5045 |
0.5908 | 0.1003 | 142 | 0.4930 |
0.5669 | 0.1505 | 213 | 0.4854 |
0.5575 | 0.2007 | 284 | 0.4811 |
0.535 | 0.2508 | 355 | 0.4765 |
0.5161 | 0.3010 | 426 | 0.4736 |
0.5268 | 0.3511 | 497 | 0.4726 |
0.5119 | 0.4013 | 568 | 0.4701 |
0.5329 | 0.4515 | 639 | 0.4687 |
0.5167 | 0.5016 | 710 | 0.4673 |
0.5105 | 0.5518 | 781 | 0.4660 |
0.5203 | 0.6020 | 852 | 0.4653 |
0.5035 | 0.6521 | 923 | 0.4646 |
0.4903 | 0.7023 | 994 | 0.4641 |
0.5031 | 0.7525 | 1065 | 0.4628 |
0.5147 | 0.8026 | 1136 | 0.4629 |
0.5037 | 0.8528 | 1207 | 0.4620 |
0.5029 | 0.9029 | 1278 | 0.4620 |
0.492 | 0.9531 | 1349 | 0.4621 |
Framework versions
- PEFT 0.13.2
- Transformers 4.45.2
- Pytorch 2.3.0+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1
Citations
@misc{thebeagle-v2,
title={TheBeagle v2: MGS},
author={Xavier Murias},
year={2024},
publisher = {HuggingFace},
journal = {HuggingFace repository},
howpublished = {\url{https://huggingface.co/fblgit/TheBeagle-v2beta-32B-MGS}},
}
@misc{qwen2.5,
title = {Qwen2.5: A Party of Foundation Models},
url = {https://qwenlm.github.io/blog/qwen2.5/},
author = {Qwen Team},
month = {September},
year = {2024}
}
@article{qwen2,
title={Qwen2 Technical Report},
author={An Yang and Baosong Yang and Binyuan Hui and Bo Zheng and Bowen Yu and Chang Zhou and Chengpeng Li and Chengyuan Li and Dayiheng Liu and Fei Huang and Guanting Dong and Haoran Wei and Huan Lin and Jialong Tang and Jialin Wang and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Ma and Jin Xu and Jingren Zhou and Jinze Bai and Jinzheng He and Junyang Lin and Kai Dang and Keming Lu and Keqin Chen and Kexin Yang and Mei Li and Mingfeng Xue and Na Ni and Pei Zhang and Peng Wang and Ru Peng and Rui Men and Ruize Gao and Runji Lin and Shijie Wang and Shuai Bai and Sinan Tan and Tianhang Zhu and Tianhao Li and Tianyu Liu and Wenbin Ge and Xiaodong Deng and Xiaohuan Zhou and Xingzhang Ren and Xinyu Zhang and Xipin Wei and Xuancheng Ren and Yang Fan and Yang Yao and Yichang Zhang and Yu Wan and Yunfei Chu and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zhihao Fan},
journal={arXiv preprint arXiv:2407.10671},
year={2024}
}
- Downloads last month
- 8
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for rombodawg/cybertron-v4-qw7B-MGS_duplicated
Dataset used to train rombodawg/cybertron-v4-qw7B-MGS_duplicated
Evaluation results
- strict accuracy on IFEval (0-Shot)Open LLM Leaderboard62.640
- normalized accuracy on BBH (3-Shot)Open LLM Leaderboard37.040
- exact match on MATH Lvl 5 (4-Shot)Open LLM Leaderboard27.720
- acc_norm on GPQA (0-shot)Open LLM Leaderboard8.050
- acc_norm on MuSR (0-shot)Open LLM Leaderboard13.200
- accuracy on MMLU-PRO (5-shot)test set Open LLM Leaderboard38.590