rshrott's picture
🍻 cheers
9b680ae verified
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - image-classification
  - generated_from_trainer
model-index:
  - name: ryan03312024_lr_2e-5_wd_001
    results: []

ryan03312024_lr_2e-5_wd_001

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the properties dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1916
  • Ordinal Mae: 0.4221
  • Ordinal Accuracy: 0.6828
  • Na Accuracy: 0.8591

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1.5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Ordinal Mae Ordinal Accuracy Na Accuracy
0.4436 0.04 100 0.3698 0.8706 0.3332 0.7990
0.3143 0.07 200 0.3215 0.8555 0.4017 0.8093
0.3385 0.11 300 0.2997 0.8303 0.4485 0.8591
0.3127 0.14 400 0.2889 0.8013 0.4881 0.8746
0.3054 0.18 500 0.2804 0.7619 0.5325 0.8780
0.3051 0.22 600 0.2752 0.7215 0.5235 0.9158
0.2833 0.25 700 0.2653 0.6807 0.5487 0.8969
0.2907 0.29 800 0.2550 0.6432 0.5618 0.8351
0.2468 0.32 900 0.2522 0.6119 0.5972 0.8058
0.2199 0.36 1000 0.2437 0.6023 0.6062 0.8127
0.2219 0.4 1100 0.2361 0.5574 0.5959 0.9038
0.2071 0.43 1200 0.2387 0.5439 0.6175 0.7715
0.2214 0.47 1300 0.2341 0.5257 0.6232 0.7955
0.2627 0.5 1400 0.2315 0.5152 0.6124 0.7990
0.2067 0.54 1500 0.2247 0.5026 0.6396 0.8110
0.2086 0.58 1600 0.2192 0.4955 0.6589 0.8041
0.1993 0.61 1700 0.2182 0.4738 0.6522 0.8127
0.1962 0.65 1800 0.2211 0.4858 0.6232 0.9141
0.1882 0.69 1900 0.2045 0.4669 0.6632 0.8625
0.1895 0.72 2000 0.2082 0.4696 0.6316 0.8608
0.1979 0.76 2100 0.2270 0.4791 0.6373 0.9003
0.2643 0.79 2200 0.2069 0.4663 0.6414 0.8557
0.2279 0.83 2300 0.2030 0.4581 0.6543 0.8694
0.1965 0.87 2400 0.2109 0.4446 0.6820 0.8007
0.1637 0.9 2500 0.2005 0.4439 0.6763 0.8557
0.1705 0.94 2600 0.1964 0.4321 0.6748 0.8540
0.2412 0.97 2700 0.1958 0.4345 0.6730 0.8780
0.1438 1.01 2800 0.1972 0.4301 0.6784 0.8471
0.123 1.05 2900 0.1995 0.4231 0.6753 0.8419
0.1411 1.08 3000 0.1946 0.4220 0.6817 0.8454
0.1443 1.12 3100 0.1916 0.4221 0.6828 0.8591
0.208 1.15 3200 0.1942 0.4163 0.6740 0.8677
0.1343 1.19 3300 0.1962 0.4182 0.6889 0.8471
0.1347 1.23 3400 0.1938 0.4161 0.6900 0.8660
0.1076 1.26 3500 0.1970 0.4181 0.6943 0.8471
0.1248 1.3 3600 0.1951 0.4151 0.6959 0.8471
0.1455 1.33 3700 0.1952 0.4147 0.6851 0.8814
0.131 1.37 3800 0.1953 0.4172 0.6948 0.8454
0.1307 1.41 3900 0.1932 0.4127 0.6928 0.8643
0.1198 1.44 4000 0.1947 0.4110 0.6941 0.8574
0.1363 1.48 4100 0.1952 0.4087 0.6887 0.8574

Framework versions

  • Transformers 4.39.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2