|
--- |
|
license: gpl-3.0 |
|
tags: |
|
- DocVQA |
|
- Document Question Answering |
|
- Document Visual Question Answering |
|
datasets: |
|
- rubentito/mp-docvqa |
|
language: |
|
- en |
|
--- |
|
|
|
# LayoutLMv3 base fine-tuned on MP-DocVQA |
|
|
|
This is pretrained LayoutLMv3 from [Microsoft hub](https://huggingface.co/microsoft/layoutlmv3-base) and fine-tuned on Multipage DocVQA (MP-DocVQA) dataset. |
|
|
|
|
|
This model was used as a baseline in [Hierarchical multimodal transformers for Multi-Page DocVQA](https://arxiv.org/pdf/2212.05935.pdf). |
|
- Results on the MP-DocVQA dataset are reported in Table 2. |
|
- Training hyperparameters can be found in Table 8 of Appendix D. |
|
|
|
|
|
## How to use |
|
|
|
Here is how to use this model to get the features of a given text in PyTorch: |
|
|
|
```python |
|
import torch |
|
from transformers import LayoutLMv3Processor, LayoutLMv3ForQuestionAnswering |
|
|
|
processor = LayoutLMv3Processor.from_pretrained("rubentito/layoutlmv3-base-mpdocvqa", apply_ocr=False) |
|
model = LayoutLMv3ForQuestionAnswering.from_pretrained("rubentito/layoutlmv3-base-mpdocvqa") |
|
|
|
image = Image.open("example.jpg").convert("RGB") |
|
question = "Is this a question?" |
|
context = ["Example"] |
|
boxes = [0, 0, 1000, 1000] # This is an example bounding box covering the whole image. |
|
document_encoding = processor(image, question, context, boxes=boxes, return_tensors="pt") |
|
outputs = model(**document_encoding) |
|
|
|
# Get the answer |
|
start_idx = torch.argmax(outputs.start_logits, axis=1) |
|
end_idx = torch.argmax(outputs.end_logits, axis=1) |
|
answers = self.processor.tokenizer.decode(input_tokens[start_idx: end_idx+1]).strip() |
|
``` |
|
|
|
## Model results |
|
|
|
Extended experimentation can be found in Table 2 of [Hierarchical multimodal transformers for Multi-Page DocVQA](https://arxiv.org/pdf/2212.05935.pdf). |
|
You can also check the live leaderboard at the [RRC Portal](https://rrc.cvc.uab.es/?ch=17&com=evaluation&task=4). |
|
| Model | HF name | ANLS | APPA | |
|
|-----------------------------------------------------------------------------------|:--------------------------------------|:-------------:|:---------:| |
|
| [Bert large](https://huggingface.co/rubentito/bert-large-mpdocvqa) | rubentito/bert-large-mpdocvqa | 0.4183 | 51.6177 | |
|
| [Longformer base](https://huggingface.co/rubentito/longformer-base-mpdocvqa) | rubentito/longformer-base-mpdocvqa | 0.5287 | 71.1696 | |
|
| [BigBird ITC base](https://huggingface.co/rubentito/bigbird-base-itc-mpdocvqa) | rubentito/bigbird-base-itc-mpdocvqa | 0.4929 | 67.5433 | |
|
| [**LayoutLMv3 base**](https://huggingface.co/rubentito/layoutlmv3-base-mpdocvqa) | rubentito/layoutlmv3-base-mpdocvqa | 0.4538 | 51.9426 | |
|
| [T5 base](https://huggingface.co/rubentito/t5-base-mpdocvqa) | rubentito/t5-base-mpdocvqa | 0.5050 | 0.0000 | |
|
| Hi-VT5 | TBA | 0.6201 | 79.23 | |
|
|
|
## Citation Information |
|
|
|
```tex |
|
@article{tito2022hierarchical, |
|
title={Hierarchical multimodal transformers for Multi-Page DocVQA}, |
|
author={Tito, Rub{\`e}n and Karatzas, Dimosthenis and Valveny, Ernest}, |
|
journal={arXiv preprint arXiv:2212.05935}, |
|
year={2022} |
|
} |
|
``` |