rubentito's picture
Update README.md
d8bc5b9
|
raw
history blame
3.05 kB
metadata
license: gpl-3.0
tags:
  - DocVQA
  - Document Question Answering
  - Document Visual Question Answering
datasets:
  - MP-DocVQA
language:
  - en

LayoutLMv3 base fine-tuned on MP-DocVQA

This is pretrained LayoutLMv3 from Microsoft hub and fine-tuned on Multipage DocVQA (MP-DocVQA) dataset.

This model was used as a baseline in Hierarchical multimodal transformers for Multi-Page DocVQA.

  • Results on the MP-DocVQA dataset are reported in Table 2.
  • Training hyperparameters can be found in Table 8 of Appendix D.

How to use

Here is how to use this model to get the features of a given text in PyTorch:

import torch
from transformers import LayoutLMv3Processor, LayoutLMv3ForQuestionAnswering

processor = LayoutLMv3Processor.from_pretrained("rubentito/layoutlmv3-base-mpdocvqa", apply_ocr=False)
model = LayoutLMv3ForQuestionAnswering.from_pretrained("rubentito/layoutlmv3-base-mpdocvqa")

image = Image.open("example.jpg").convert("RGB")
question = "Is this a question?"
context = ["Example"]
boxes = [0, 0, 1000, 1000]  # This is an example bounding box covering the whole image.
document_encoding = processor(image, question, context, boxes=boxes, return_tensors="pt")
outputs = model(**document_encoding)

# Get the answer
start_idx = torch.argmax(outputs.start_logits, axis=1)
end_idx = torch.argmax(outputs.end_logits, axis=1)
answers = self.processor.tokenizer.decode(input_tokens[start_idx: end_idx+1]).strip()

Model results

Extended experimentation can be found in Table 2 of Hierarchical multimodal transformers for Multi-Page DocVQA. You can also check the live leaderboard at the RRC Portal.

Model HF name ANLS APPA
Bert-large rubentito/bert-large-mpdocvqa 0.4183 51.6177
Longformer-base rubentito/longformer-base-mpdocvqa 0.5287 71.1696
BigBird ITC base rubentito/bigbird-base-itc-mpdocvqa 0.4929 67.5433
LayoutLMv3 base rubentito/layoutlmv3-base-mpdocvqa 0.4538 51.9426
T5 base rubentito/t5-base-mpdocvqa 0.5050 0.0000
Hi-VT5 TBA 0.6201 79.23

BibTeX entry

@article{tito2022hierarchical,
  title={Hierarchical multimodal transformers for Multi-Page DocVQA},
  author={Tito, Rub{\`e}n and Karatzas, Dimosthenis and Valveny, Ernest},
  journal={arXiv preprint arXiv:2212.05935},
  year={2022}
}