sanjay920's picture
Update README.md
c8a6652 verified
|
raw
history blame
3.42 kB
metadata
license: apache-2.0
model-index:
  - name: Rubra-Mistral-7B-Instruct-v0.2
    results:
      - task:
          type: text-generation
        dataset:
          type: MMLU
          name: MMLU
        metrics:
          - type: 5-shot
            value: 58.9
            verified: false
      - task:
          type: text-generation
        dataset:
          type: GPQA
          name: GPQA
        metrics:
          - type: 0-shot
            value: 29.91
            verified: false
      - task:
          type: text-generation
        dataset:
          type: GSM-8K
          name: GSM-8K
        metrics:
          - type: 8-shot, CoT
            value: 34.12
            verified: false
      - task:
          type: text-generation
        dataset:
          type: MATH
          name: MATH
        metrics:
          - type: 4-shot, CoT
            value: 8.36
            verified: false
      - task:
          type: text-generation
        dataset:
          type: MT-bench
          name: MT-bench
        metrics:
          - type: GPT-4 as Judge
            value: 7.36
            verified: false

Rubra Mistral-7B-Instruct-v0.2

Model description

The model is the result of further post-training mistralai/Mistral-7B-Instruct-v0.2. It is capable of complex tool/function calling.

Training Data

The model was post-trained (freeze tuned & DPO) on a proprietary dataset consisting of diverse function calling, chat, and instruct data.

How to use

You can use the model with the Hugging Face transformers and the rubra library rubra-tools as follows:

pip install rubra_tools torch==2.3.0 transformers
TODO

Training Hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 12
  • total_train_batch_size: 24
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 1.0

Framework Versions

  • Transformers 4.41.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1

Limitations and Bias

While the model performs well on a wide range of tasks, it may still produce biased or incorrect outputs. Users should exercise caution and critical judgment when using the model in sensitive or high-stakes applications. The model's outputs are influenced by the data it was trained on, which may contain inherent biases.

Ethical Considerations

Users should ensure that the deployment of this model adheres to ethical guidelines and consider the potential societal impact of the generated text. Misuse of the model for generating harmful or misleading content is strongly discouraged.

Acknowledgements

We would like to thank Mistral for the model and LLaMA-Factory for training utilities.

Contact Information

For questions or comments about the model, please reach out to the rubra team.

Citation

If you use this work, please cite it as:

@misc {rubra_ai_2024,
    author       = { {Rubra AI} },
    title        = { Mistral-7B-Instruct-v0.2 (Revision 06b4f0a) },
    year         = 2024,
    url          = { https://huggingface.co/rubra-ai/Mistral-7B-Instruct-v0.2 },
    doi          = { 10.57967/hf/2641 },
    publisher    = { Hugging Face }
}