Edit model card

Legal_BERTimbau

Introduction

Legal_BERTimbau Large is a fine-tuned BERT model based on BERTimbau Large.

"BERTimbau Base is a pretrained BERT model for Brazilian Portuguese that achieves state-of-the-art performances on three downstream NLP tasks: Named Entity Recognition, Sentence Textual Similarity and Recognizing Textual Entailment. It is available in two sizes: Base and Large.

For further information or requests, please go to BERTimbau repository."

The performance of Language Models can change drastically when there is a domain shift between training and test data. In order create a Portuguese Language Model adapted to a Legal domain, the original BERTimbau model was submitted to a fine-tuning stage where it was performed 1 "PreTraining" epoch over 30 000 legal Portuguese Legal documents available online.

Available models

Model Arch. #Layers #Params
rufimelo/Legal-BERTimbau-base BERT-Base 12 110M
rufimelo/Legal-BERTimbau-large BERT-Large 24 335M

Usage

from transformers import AutoTokenizer, AutoModelForMaskedLM

tokenizer = AutoTokenizer.from_pretrained("rufimelo/Legal-BERTimbau-base")

model = AutoModelForMaskedLM.from_pretrained("rufimelo/Legal-BERTimbau-base")

Masked language modeling prediction example

from  transformers  import  pipeline
from  transformers  import  AutoTokenizer, AutoModelForMaskedLM

tokenizer = AutoTokenizer.from_pretrained("rufimelo/Legal-BERTimbau-base")
model = AutoModelForMaskedLM.from_pretrained("rufimelo/Legal-BERTimbau-base")

pipe = pipeline('fill-mask', model=model, tokenizer=tokenizer)
pipe('O advogado apresentou [MASK] para o juíz')
# [{'score': 0.5034703612327576, 
#'token': 8190, 
#'token_str': 'recurso', 
#'sequence': 'O advogado apresentou recurso para o juíz'}, 
#{'score': 0.07347951829433441, 
#'token': 21973, 
#'token_str': 'petição', 
#'sequence': 'O advogado apresentou petição para o juíz'}, 
#{'score': 0.05165359005331993, 
#'token': 4299, 
#'token_str': 'resposta', 
#'sequence': 'O advogado apresentou resposta para o juíz'}, 
#{'score': 0.04611917585134506,
#'token': 5265, 
#'token_str': 'exposição', 
#'sequence': 'O advogado apresentou exposição para o juíz'}, 
#{'score': 0.04068068787455559, 
#'token': 19737, 'token_str': 
#'alegações', 
#'sequence': 'O advogado apresentou alegações para o juíz'}]

For BERT embeddings

import  torch
from  transformers  import  AutoModel

model = AutoModel.from_pretrained('rufimelo/Legal-BERTimbau-base')
input_ids = tokenizer.encode('O advogado apresentou recurso para o juíz', return_tensors='pt')

with  torch.no_grad():
    outs = model(input_ids)
    encoded = outs[0][0, 1:-1]
    
#tensor([[ 0.0328, -0.4292, -0.6230, ..., -0.3048, -0.5674, 0.0157], 
#[-0.3569, 0.3326, 0.7013, ..., -0.7778, 0.2646, 1.1310], 
#[ 0.3169, 0.4333, 0.2026, ..., 1.0517, -0.1951, 0.7050], 
#..., 
#[-0.3648, -0.8137, -0.4764, ..., -0.2725, -0.4879, 0.6264], 
#[-0.2264, -0.1821, -0.3011, ..., -0.5428, 0.1429, 0.0509], 
#[-1.4617, 0.6281, -0.0625, ..., -1.2774, -0.4491, 0.3131]])

Citation

If you use this work, please cite BERTimbau's work:

@inproceedings{souza2020bertimbau,
  author    = {F{\'a}bio Souza and
               Rodrigo Nogueira and
               Roberto Lotufo},
  title     = {{BERT}imbau: pretrained {BERT} models for {B}razilian {P}ortuguese},
  booktitle = {9th Brazilian Conference on Intelligent Systems, {BRACIS}, Rio Grande do Sul, Brazil, October 20-23 (to appear)},
  year      = {2020}
}
Downloads last month
788
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train rufimelo/Legal-BERTimbau-base