|
|
|
--- |
|
language: |
|
- pt |
|
thumbnail: "Portuguese BERT for the Legal Domain" |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- transformers |
|
datasets: |
|
- assin |
|
- assin2 |
|
- stsb_multi_mt |
|
- rufimelo/PortugueseLegalSentences-v2 |
|
widget: |
|
- source_sentence: "O advogado apresentou as provas ao juíz." |
|
sentences: |
|
- "O juíz leu as provas." |
|
- "O juíz leu o recurso." |
|
- "O juíz atirou uma pedra." |
|
example_title: "Example 1" |
|
model-index: |
|
- name: BERTimbau |
|
results: |
|
- task: |
|
name: STS |
|
type: STS |
|
metrics: |
|
- name: Pearson Correlation - assin Dataset |
|
type: Pearson Correlation |
|
value: xxxx |
|
- name: Pearson Correlation - assin2 Dataset |
|
type: Pearson Correlation |
|
value: xxxxx |
|
- name: Pearson Correlation - stsb_multi_mt pt Dataset |
|
type: pearsonr |
|
value: xxxxx |
|
--- |
|
|
|
# rufimelo/Legal-BERTimbau-large-TSDAE-v4-GPL-sts |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search. |
|
rufimelo/Legal-BERTimbau-large-TSDAE-v4-GPL-sts is based on Legal-BERTimbau-large which derives from [BERTimbau](https://huggingface.co/neuralmind/bert-large-portuguese-cased) large. |
|
It is adapted to the Portuguese legal domain and trained for STS on portuguese datasets. |
|
|
|
## Usage (Sentence-Transformers) |
|
|
|
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: |
|
|
|
``` |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can use the model like this: |
|
|
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
sentences = ["Isto é um exemplo", "Isto é um outro exemplo"] |
|
|
|
model = SentenceTransformer('rufimelo/Legal-BERTimbau-large-TSDAE-v4-GPL-sts') |
|
embeddings = model.encode(sentences) |
|
print(embeddings) |
|
``` |
|
|
|
|
|
|
|
## Usage (HuggingFace Transformers) |
|
|
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModel |
|
import torch |
|
|
|
|
|
#Mean Pooling - Take attention mask into account for correct averaging |
|
def mean_pooling(model_output, attention_mask): |
|
token_embeddings = model_output[0] #First element of model_output contains all token embeddings |
|
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() |
|
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) |
|
|
|
|
|
# Sentences we want sentence embeddings for |
|
sentences = ['This is an example sentence', 'Each sentence is converted'] |
|
|
|
# Load model from HuggingFace Hub |
|
tokenizer = AutoTokenizer.from_pretrained('rufimelo/Legal-BERTimbau-large-TSDAE-v4-GPL-sts') |
|
model = AutoModel.from_pretrained('rufimelo/Legal-BERTimbau-large-TSDAE-v4-GPL-sts') |
|
|
|
# Tokenize sentences |
|
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') |
|
|
|
# Compute token embeddings |
|
with torch.no_grad(): |
|
model_output = model(**encoded_input) |
|
|
|
# Perform pooling. In this case, mean pooling. |
|
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) |
|
|
|
print("Sentence embeddings:") |
|
print(sentence_embeddings) |
|
``` |
|
|
|
|
|
## Evaluation Results STS |
|
|
|
| Model| Assin | Assin2|stsb_multi_mt pt| avg| |
|
| ---------------------------------------- | ---------- | ---------- |---------- |---------- | |
|
| Legal-BERTimbau-sts-base| 0.71457| 0.73545 | 0.72383|0.72462| |
|
| Legal-BERTimbau-sts-base-ma| 0.74874 | 0.79532|0.82254 |0.78886| |
|
| Legal-BERTimbau-sts-base-ma-v2| 0.75481 | 0.80262|0.82178|0.79307| |
|
| Legal-BERTimbau-base-TSDAE-sts|0.78814 |0.81380 |0.75777|0.78657| |
|
| Legal-BERTimbau-sts-large| 0.76629| 0.82357 | 0.79120|0.79369| |
|
| Legal-BERTimbau-sts-large-v2| 0.76299 | 0.81121|0.81726 |0.79715| |
|
| Legal-BERTimbau-sts-large-ma| 0.76195| 0.81622 | 0.82608|0.80142| |
|
| Legal-BERTimbau-sts-large-ma-v2| 0.7836| 0.8462| 0.8261| 0.81863| |
|
| Legal-BERTimbau-sts-large-ma-v3| 0.7749| **0.8470**| 0.8364| **0.81943**| |
|
| Legal-BERTimbau-large-v2-sts| 0.71665| 0.80106| 0.73724| 0.75165| |
|
| Legal-BERTimbau-large-TSDAE-sts| 0.72376| 0.79261| 0.73635| 0.75090| |
|
| Legal-BERTimbau-large-TSDAE-sts-v2| 0.81326| 0.83130| 0.786314| 0.81029| |
|
| Legal-BERTimbau-large-TSDAE-sts-v3|0.80703 |0.82270 |0.77638 |0.80204 | |
|
| ---------------------------------------- | ---------- |---------- |---------- |---------- | |
|
| BERTimbau base Fine-tuned for STS|**0.78455** | 0.80626|0.82841|0.80640| |
|
| BERTimbau large Fine-tuned for STS|0.78193 | 0.81758|0.83784|0.81245| |
|
| ---------------------------------------- | ---------- |---------- |---------- |---------- | |
|
| paraphrase-multilingual-mpnet-base-v2| 0.71457| 0.79831 |0.83999 |0.78429| |
|
| paraphrase-multilingual-mpnet-base-v2 Fine-tuned with assin(s)| 0.77641|0.79831 |**0.84575**|0.80682| |
|
|
|
## Training |
|
|
|
rufimelo/Legal-BERTimbau-large-TSDAE-sts-v3 is based on rufimelo/Legal-BERTimbau-large-TSDAE-sts-v3 which derives from [BERTimbau](https://huggingface.co/neuralmind/bert-base-portuguese-cased) large. |
|
|
|
rufimelo/Legal-BERTimbau-large-TSDAE-v4-GPL-sts was trained with TSDAE: 200000 cleaned documents (https://huggingface.co/datasets/rufimelo/PortugueseLegalSentences-v1) |
|
'lr': 1e-5 |
|
|
|
It was used GPL technique where batch = 4, epoch = 1, lr = 2e-5 and as to simulate the Cross-Encoder: rufimelo/Legal-BERTimbau-sts-large-v2 with dot product |
|
|
|
It was trained for Semantic Textual Similarity, being submitted to a fine tuning stage with the [assin](https://huggingface.co/datasets/assin), [assin2](https://huggingface.co/datasets/assin2) and [stsb_multi_mt pt](https://huggingface.co/datasets/stsb_multi_mt) datasets. 'lr': 1e-5 |
|
|
|
|
|
## Full Model Architecture |
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False}) |
|
) |
|
``` |
|
|
|
## Citing & Authors |
|
|
|
If you use this work, please cite BERTimbau's work: |
|
|
|
```bibtex |
|
@inproceedings{souza2020bertimbau, |
|
author = {F{\'a}bio Souza and |
|
Rodrigo Nogueira and |
|
Roberto Lotufo}, |
|
title = {{BERT}imbau: pretrained {BERT} models for {B}razilian {P}ortuguese}, |
|
booktitle = {9th Brazilian Conference on Intelligent Systems, {BRACIS}, Rio Grande do Sul, Brazil, October 20-23 (to appear)}, |
|
year = {2020} |
|
} |
|
``` |