rufimelo's picture
Update README.md
21db10e
---
language:
- pt
thumbnail: "Portuguese BERT for the Legal Domain"
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- transformers
datasets:
- assin
- assin2
- stsb_multi_mt
- rufimelo/PortugueseLegalSentences-v2
widget:
- source_sentence: "O advogado apresentou as provas ao juíz."
sentences:
- "O juíz leu as provas."
- "O juíz leu o recurso."
- "O juíz atirou uma pedra."
example_title: "Example 1"
model-index:
- name: BERTimbau
results:
- task:
name: STS
type: STS
metrics:
- name: Pearson Correlation - assin Dataset
type: Pearson Correlation
value: xxxx
- name: Pearson Correlation - assin2 Dataset
type: Pearson Correlation
value: xxxxx
- name: Pearson Correlation - stsb_multi_mt pt Dataset
type: pearsonr
value: xxxxx
---
# rufimelo/Legal-BERTimbau-large-TSDAE-v4-GPL-sts
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.
rufimelo/Legal-BERTimbau-large-TSDAE-v4-GPL-sts is based on Legal-BERTimbau-large which derives from [BERTimbau](https://huggingface.co/neuralmind/bert-large-portuguese-cased) large.
It is adapted to the Portuguese legal domain and trained for STS on portuguese datasets.
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["Isto é um exemplo", "Isto é um outro exemplo"]
model = SentenceTransformer('rufimelo/Legal-BERTimbau-large-TSDAE-v4-GPL-sts')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('rufimelo/Legal-BERTimbau-large-TSDAE-v4-GPL-sts')
model = AutoModel.from_pretrained('rufimelo/Legal-BERTimbau-large-TSDAE-v4-GPL-sts')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results STS
| Model| Assin | Assin2|stsb_multi_mt pt| avg|
| ---------------------------------------- | ---------- | ---------- |---------- |---------- |
| Legal-BERTimbau-sts-base| 0.71457| 0.73545 | 0.72383|0.72462|
| Legal-BERTimbau-sts-base-ma| 0.74874 | 0.79532|0.82254 |0.78886|
| Legal-BERTimbau-sts-base-ma-v2| 0.75481 | 0.80262|0.82178|0.79307|
| Legal-BERTimbau-base-TSDAE-sts|0.78814 |0.81380 |0.75777|0.78657|
| Legal-BERTimbau-sts-large| 0.76629| 0.82357 | 0.79120|0.79369|
| Legal-BERTimbau-sts-large-v2| 0.76299 | 0.81121|0.81726 |0.79715|
| Legal-BERTimbau-sts-large-ma| 0.76195| 0.81622 | 0.82608|0.80142|
| Legal-BERTimbau-sts-large-ma-v2| 0.7836| 0.8462| 0.8261| 0.81863|
| Legal-BERTimbau-sts-large-ma-v3| 0.7749| **0.8470**| 0.8364| **0.81943**|
| Legal-BERTimbau-large-v2-sts| 0.71665| 0.80106| 0.73724| 0.75165|
| Legal-BERTimbau-large-TSDAE-sts| 0.72376| 0.79261| 0.73635| 0.75090|
| Legal-BERTimbau-large-TSDAE-sts-v2| 0.81326| 0.83130| 0.786314| 0.81029|
| Legal-BERTimbau-large-TSDAE-sts-v3|0.80703 |0.82270 |0.77638 |0.80204 |
| ---------------------------------------- | ---------- |---------- |---------- |---------- |
| BERTimbau base Fine-tuned for STS|**0.78455** | 0.80626|0.82841|0.80640|
| BERTimbau large Fine-tuned for STS|0.78193 | 0.81758|0.83784|0.81245|
| ---------------------------------------- | ---------- |---------- |---------- |---------- |
| paraphrase-multilingual-mpnet-base-v2| 0.71457| 0.79831 |0.83999 |0.78429|
| paraphrase-multilingual-mpnet-base-v2 Fine-tuned with assin(s)| 0.77641|0.79831 |**0.84575**|0.80682|
## Training
rufimelo/Legal-BERTimbau-large-TSDAE-sts-v3 is based on rufimelo/Legal-BERTimbau-large-TSDAE-sts-v3 which derives from [BERTimbau](https://huggingface.co/neuralmind/bert-base-portuguese-cased) large.
rufimelo/Legal-BERTimbau-large-TSDAE-v4-GPL-sts was trained with TSDAE: 200000 cleaned documents (https://huggingface.co/datasets/rufimelo/PortugueseLegalSentences-v1)
'lr': 1e-5
It was used GPL technique where batch = 4, epoch = 1, lr = 2e-5 and as to simulate the Cross-Encoder: rufimelo/Legal-BERTimbau-sts-large-v2 with dot product
It was trained for Semantic Textual Similarity, being submitted to a fine tuning stage with the [assin](https://huggingface.co/datasets/assin), [assin2](https://huggingface.co/datasets/assin2) and [stsb_multi_mt pt](https://huggingface.co/datasets/stsb_multi_mt) datasets. 'lr': 1e-5
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
)
```
## Citing & Authors
If you use this work, please cite BERTimbau's work:
```bibtex
@inproceedings{souza2020bertimbau,
author = {F{\'a}bio Souza and
Rodrigo Nogueira and
Roberto Lotufo},
title = {{BERT}imbau: pretrained {BERT} models for {B}razilian {P}ortuguese},
booktitle = {9th Brazilian Conference on Intelligent Systems, {BRACIS}, Rio Grande do Sul, Brazil, October 20-23 (to appear)},
year = {2020}
}
```