metadata
language:
- pt
thumbnail: Portuguese SBERT for STS
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- transformers
datasets:
- assin
- assin2
- stsb_multi_mt
widget:
- source_sentence: O advogado apresentou as provas ao juíz.
sentences:
- O juíz leu as provas.
- O juíz leu o recurso.
- O juíz atirou uma pedra.
example_title: Example 1
model-index:
- name: BERTimbau
results:
- task:
name: STS
type: STS
metrics:
- name: Pearson Correlation - assin Dataset
type: Pearson Correlation
value: 0.81758
- name: Pearson Correlation - assin2 Dataset
type: Pearson Correlation
value: 0.83784
- name: Pearson Correlation - stsb_multi_mt pt Dataset
type: Pearson Correlation
value: 0.81245
rufimelo/bert-large-portuguese-cased-sts2
This is a sentence-transformers model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search. rufimelo/bert-large-portuguese-cased-sts derives from BERTimbau large.
Usage (Sentence-Transformers)
Using this model becomes easy when you have sentence-transformers installed:
pip install -U sentence-transformers
Then you can use the model like this:
from sentence_transformers import SentenceTransformer
sentences = ["Isto é um exemplo", "Isto é um outro exemplo"]
model = SentenceTransformer('rufimelo/bert-large-portuguese-cased-sts')
embeddings = model.encode(sentences)
print(embeddings)
Usage (HuggingFace Transformers)
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('rufimelo/bert-large-portuguese-cased-sts')
model = AutoModel.from_pretrained('rufimelo/bert-large-portuguese-cased-sts')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
Training
rufimelo/bert-large-portuguese-cased-sts derives from BERTimbau large.
It was trained for Semantic Textual Similarity, being submitted to a fine tuning stage with the assin, assin2 and stsb_multi_mt pt datasets.
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
)
Citing & Authors
If you use this work, please cite BERTimbau's work:
@inproceedings{souza2020bertimbau,
author = {F{\'a}bio Souza and
Rodrigo Nogueira and
Roberto Lotufo},
title = {{BERT}imbau: pretrained {BERT} models for {B}razilian {P}ortuguese},
booktitle = {9th Brazilian Conference on Intelligent Systems, {BRACIS}, Rio Grande do Sul, Brazil, October 20-23 (to appear)},
year = {2020}
}