metadata
library_name: transformers
license: apache-2.0
base_model: facebook/convnext-tiny-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: convnext-tiny-224-finetuned-papsmear
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8529411764705882
convnext-tiny-224-finetuned-papsmear
This model is a fine-tuned version of facebook/convnext-tiny-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.4485
- Accuracy: 0.8529
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.4789 | 0.9935 | 38 | 1.4474 | 0.3235 |
1.2481 | 1.9869 | 76 | 1.0898 | 0.6397 |
0.9694 | 2.9804 | 114 | 0.9261 | 0.6471 |
0.8414 | 4.0 | 153 | 0.8016 | 0.7059 |
0.7675 | 4.9935 | 191 | 0.7258 | 0.7426 |
0.7131 | 5.9869 | 229 | 0.7147 | 0.7353 |
0.5973 | 6.9804 | 267 | 0.7040 | 0.7353 |
0.5543 | 8.0 | 306 | 0.6064 | 0.7941 |
0.4903 | 8.9935 | 344 | 0.5418 | 0.8382 |
0.3942 | 9.9869 | 382 | 0.5043 | 0.8456 |
0.3721 | 10.9804 | 420 | 0.4922 | 0.8456 |
0.4036 | 12.0 | 459 | 0.4944 | 0.8309 |
0.3444 | 12.9935 | 497 | 0.4760 | 0.8529 |
0.3385 | 13.9869 | 535 | 0.4597 | 0.8603 |
0.3161 | 14.9020 | 570 | 0.4485 | 0.8529 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.0
- Tokenizers 0.19.1