|
--- |
|
license: apache-2.0 |
|
--- |
|
note : use original open llama tokenizer |
|
|
|
#model_path = 'openlm-research/open_llama_3b' |
|
model_path = 'ruwan/open-llama-sharded-1GB-7B-alpaca-vmware' |
|
# model_path = 'openlm-research/open_llama_13b_600bt' |
|
|
|
tokenizer = LlamaTokenizer.from_pretrained("openlm-research/open_llama_7b") |
|
model = LlamaForCausalLM.from_pretrained( |
|
model_path, torch_dtype=torch.float16, device_map='auto',load_in_8bit=True |
|
) |
|
|
|
|
|
prompt_template = "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:" |
|
|
|
prompt= 'Explain in simple terms how the attention mechanism of a transformer model works' |
|
|
|
|
|
inputt = prompt_template.format(instruction= prompt) |
|
input_ids = tokenizer(inputt, return_tensors="pt").input_ids.to("cuda") |
|
|
|
output1 = model.generate(input_ids, max_length=512) |
|
input_length = input_ids.shape[1] |
|
output1 = output1[:, input_length:] |
|
output= tokenizer.decode(output1[0]) |