Commonsense-QA-Mistral-7B

This is a finetuned model of mistralai/Mistral-7B-Instruct-v0.1 with neulab/tldr dataset.

The model is loaded in 4-bit and fine-tuned with LoRA.

Usage

Loading of model:

# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM

model = AutoModelForCausalLM.from_pretrained(
    "rvv-karma/BASH-Coder-Mistral-7B",
    low_cpu_mem_usage=True,
    return_dict=True,
    torch_dtype=torch.bfloat16,
    device_map="auto",
)

tokenizer = AutoTokenizer.from_pretrained("rvv-karma/BASH-Coder-Mistral-7B", trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "left"

Sample:

pipe = pipeline(
    task="text-generation",
    model=model,
    tokenizer=tokenizer,
    return_full_text=False,
    pad_token_id=tokenizer.pad_token_id,
    eos_token_id=13,
    max_new_tokens=8
)

prompt = """QUESTION: fix a given ntfs partition
ANSWER: """
result = pipe(prompt)
generated = result[0]['generated_text']
print(generated)

# Output: sudo ntfsfix {{/dev/sdXN}}

Fine-tuning script

Kaggle Notebook

Downloads last month
27
Safetensors
Model size
7.24B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for rvv-karma/BASH-Coder-Mistral-7B

Merges
2 models

Dataset used to train rvv-karma/BASH-Coder-Mistral-7B