s-xiao's picture
End of training
5ed2994
metadata
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - generated_from_trainer
datasets:
  - PolyAI/minds14
metrics:
  - wer
model-index:
  - name: whisper-tiny-PolyAI-minds14
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: PolyAI/minds14
          type: PolyAI/minds14
          config: en-US
          split: train
          args: en-US
        metrics:
          - name: Wer
            type: wer
            value: 0.36068476977567887

whisper-tiny-PolyAI-minds14

This model is a fine-tuned version of openai/whisper-tiny on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5565
  • Wer Ortho: 0.5120
  • Wer: 0.3607

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-07
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 50
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
2.3523 71.43 500 2.3552 0.6089 0.4067
1.1267 142.86 1000 1.2038 0.5922 0.4132
0.5363 214.29 1500 0.7055 0.5694 0.4014
0.3846 285.71 2000 0.6171 0.5490 0.4008
0.304 357.14 2500 0.5816 0.5379 0.3890
0.2428 428.57 3000 0.5644 0.5182 0.3713
0.1922 500.0 3500 0.5570 0.5139 0.3666
0.1499 571.43 4000 0.5565 0.5120 0.3607

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.0.0+cu117
  • Datasets 2.14.6
  • Tokenizers 0.14.1