metadata
language:
- en
metrics:
- bleu
- meteor
- chrf
- comet
- bertscore
library_name: transformers
Model Card for Model ID
This model card lists fine-tuned byT5 model for the task of Text Generation from Meaning Representation (DRS).
Model Details
We worked on a pre-trained byt5-base model and fine-tuned it with the Parallel Meaning Bank dataset (DRS-Text pairs dataset). Furthermore, we enriched the gold_silver flavors of PMB (release 5.0.0) with different augmentation strategies.
Uses
To use the model, follow the code below for a quick response.
from transformers import ByT5Tokenizer, T5ForConditionalGeneration
# Initialize the tokenizer and model
tokenizer = ByT5Tokenizer.from_pretrained('saadamin2k13/byT5_ft_generation', max_length=512)
model = T5ForConditionalGeneration.from_pretrained('saadamin2k13/byT5_ft_generation')
# Example sentence
example = "male.n.02 Name 'Tom' yell.v.01 Agent -1 Time +1 time.n.08 TPR now"
# Tokenize and prepare the input
x = tokenizer(example, return_tensors='pt', padding=True, truncation=True, max_length=512)['input_ids']
# Generate output
output = model.generate(x)
# Decode and print the output text
pred_text = tokenizer.decode(output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
print(pred_text)