Edit model card

Upstream model config

{
  "_name_or_path": "output/hermes-llama2-4k/checkpoint-2259",
  "architectures": [
    "LlamaForCausalLM"
  ],
  "bos_token_id": 1,
  "eos_token_id": 2,
  "hidden_act": "silu",
  "hidden_size": 4096,
  "initializer_range": 0.02,
  "intermediate_size": 11008,
  "max_position_embeddings": 4096,
  "model_type": "llama",
  "num_attention_heads": 32,
  "num_hidden_layers": 32,
  "num_key_value_heads": 32,
  "pad_token_id": 0,
  "pretraining_tp": 1,
  "rms_norm_eps": 1e-05,
  "rope_scaling": null,
  "tie_word_embeddings": false,
  "torch_dtype": "bfloat16",
  "transformers_version": "4.32.0.dev0",
  "use_cache": false,
  "vocab_size": 32000
}

Dataset

DATASET = "abideen/Cosmopedia-100k-pretrain" # @param
from datasets import load_dataset
# converted to BitLinear

class BitLinear(nn.Linear):
    def forward(self, x):
        w = self.weight # a weight tensor with shape [d, k]
        x = x.to(w.device)
        RMSNorm = LlamaRMSNorm(x.shape[-1]).to(w.device)
        x_norm = RMSNorm(x)
        # A trick for implementing Straight−Through−Estimator (STE) using detach()
        x_quant = x_norm + (activation_quant(x_norm) - x_norm).detach()
        w_quant = w + (weight_quant(w) - w).detach()
        y = F.linear(x_quant, w_quant)
        return y 

### Create the llama model with our custom config. Convert it to bitnet.
model = LlamaForCausalLM(config)
convert_to_bitnet(model, copy_weights=False)

Training

args = TrainingArguments(
    output_dir=output_path,
    per_device_train_batch_size=BATCH_SIZE,
    logging_steps=100,
    gradient_accumulation_steps=2,
    num_train_epochs=EPOCHS,
    weight_decay=0.01,
    warmup_steps=0.1,
    lr_scheduler_type="cosine",
    learning_rate=LEARNING_RATE,
    # max_steps=5000,
    save_steps=0.25,
    fp16=True,
    report_to="wandb"
)

trainer = Trainer(
    model=model,
    tokenizer=tokenizer,
    args=args,
    data_collator=data_collator,
    train_dataset=tokenized_data["train"],
)

trainer.train()

Inference

from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.models.llama.modeling_llama import *
# Load a pretrained BitNet model
model = "saadnaeem/Llama2-70M-Cosmopedia-100k-Pretrain"
tokenizer = AutoTokenizer.from_pretrained(model)
model = AutoModelForCausalLM.from_pretrained(model)


def activation_quant(x):
    scale = 127.0 / x.abs().max(dim=-1, keepdim=True).values.clamp_(min=1e-5)
    y = (x * scale).round().clamp_(-128, 127)
    y = y / scale
    return y
def weight_quant(w):
    scale = 1.0 / w.abs().mean().clamp_(min=1e-5)
    u = (w * scale).round().clamp_(-1, 1)
    u = u / scale
    return u

class BitLinear(nn.Linear):
    def forward(self, x):
        w = self.weight # a weight tensor with shape [d, k]
        x = x.to(w.device)
        RMSNorm = LlamaRMSNorm(x.shape[-1]).to(w.device)
        x_norm = RMSNorm(x)
        # A trick for implementing Straight−Through−Estimator (STE) using detach()
        x_quant = x_norm + (activation_quant(x_norm) - x_norm).detach()
        w_quant = w + (weight_quant(w) - w).detach()
        y = F.linear(x_quant, w_quant)
        return y

def convert_to_bitnet(model, copy_weights):
    for name, module in model.named_modules():
        # Replace linear layers with BitNet
        if isinstance(module, LlamaSdpaAttention) or isinstance(module, LlamaMLP):
            for child_name, child_module in module.named_children():
                if isinstance(child_module, nn.Linear):
                    bitlinear = BitLinear(child_module.in_features, child_module.out_features, child_module.bias is not None).to(device="cuda:0")
                    if copy_weights:
                        bitlinear.weight = child_module.weight
                        if child_module.bias is not None:
                            bitlinear.bias = child_module.bias
                    setattr(module, child_name, bitlinear)
        # Remove redundant input_layernorms
        elif isinstance(module, LlamaDecoderLayer):
            for child_name, child_module in module.named_children():
                if isinstance(child_module, LlamaRMSNorm) and child_name == "input_layernorm":
                    setattr(module, child_name, nn.Identity().to(device="cuda:0"))


convert_to_bitnet(model, copy_weights=True)
model.to(device="cuda:0")

prompt = "What is Machine Learning?"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
generate_ids = model.generate(inputs.input_ids, max_length=50)
tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
Downloads last month
6
Safetensors
Model size
77.5M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.