File size: 2,401 Bytes
4e81dd6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
from transformers import AutoTokenizer, Trainer, TrainingArguments
from sklearn.metrics import accuracy_score, f1_score

import numpy as np

CITDA_EPOCHS = 10
CITDA_WEIGHT_DECAY = 0.05 # L2 regularization
CITDA_BATCH_SIZE = 32
CITDA_LEARNINGRATE= 2e-5

class CITDA:
    def __init__(self, model, labels, base_model_name, tokenizer, encoded_data):
        self.labels = labels
        # self.device = device
        self.tokenizer = tokenizer
        self.model = model
        self.encoded_data = encoded_data
        
    def _get_trainer(self):
        def compute_metrics(pred):
            labels = pred.label_ids
            preds = pred.predictions.argmax(-1)
            f1 = f1_score(labels, preds, average="weighted")
            acc = accuracy_score(labels, preds)
            return {"accuracy": acc, "f1": f1}

        training_args = TrainingArguments(output_dir="results",
                                        num_train_epochs=CITDA_EPOCHS,
                                        learning_rate=CITDA_LEARNINGRATE,
                                        per_device_train_batch_size=CITDA_BATCH_SIZE,
                                        per_device_eval_batch_size=CITDA_BATCH_SIZE,
                                        load_best_model_at_end=True,
                                        metric_for_best_model="f1",
                                        weight_decay=CITDA_WEIGHT_DECAY,
                                        evaluation_strategy="epoch",
                                        save_strategy="epoch",
                                        disable_tqdm=False)
        trainer = Trainer(model=self.model, tokenizer=self.tokenizer, args=training_args,
                    compute_metrics=compute_metrics,
                    train_dataset = self.encoded_data["train"],
                    eval_dataset = self.encoded_data["validation"],
                    report_to="wandb")
        return trainer

    def train(self):
        trainer = self._get_trainer()
        results = trainer.evaluate()
        preds_output = trainer.predict(encoded_data["validation"])

        y_valid = np.array(encoded_data["validation"]["label"])
        y_preds = np.argmax(preds_output.predictions, axis=1)

        #Saving the fine-tuned model
        self.model.save_pretrained('./model') 
        self.tokenizer.save_pretrained('./model')

        return y_valid, y_pred