Endless-Coder-32B-Instruct
Large language model curated by sabma-labs for Endless Protocol Move-language workflows: answering Move questions, generating modules, and supporting Endless-specific conventions.
Usage Example
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model_id = "sabma-labs/Endless-Coder-32B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True,
)
prompt = (
"<|system|>You are a Move language programming assistant developed by Endless Labs.<|end|>"
"<|user|>Explain how to create a counter module in Move.<|end|>"
"<|assistant|>"
)
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(
**inputs,
max_new_tokens=512,
temperature=0.7,
top_p=0.9,
)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Contact
- Author: sabma-labs
- Repository: https://huggingface.co/sabma-labs/Endless-Coder-32B-Instruct
- Support: open an issue on the Hugging Face repo or reach out via sabma-labs channels.
license: apache-2.0
- Downloads last month
- -
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for sabma-labs/Endless-Coder-32B-Instruct
Base model
Qwen/Qwen2.5-32B
Finetuned
Qwen/Qwen2.5-Coder-32B
Finetuned
Qwen/Qwen2.5-Coder-32B-Instruct