|
--- |
|
license: mit |
|
base_model: microsoft/deberta-v3-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- f1 |
|
- precision |
|
- recall |
|
- accuracy |
|
model-index: |
|
- name: debert-imeocap |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# debert-imeocap |
|
|
|
This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.3914 |
|
- F1: 0.6372 |
|
- Precision: 0.6448 |
|
- Recall: 0.6365 |
|
- Accuracy: 0.6365 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 15 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | F1 | Precision | Recall | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:---------:|:------:|:--------:| |
|
| 1.5405 | 1.0 | 74 | 1.4488 | 0.3206 | 0.2386 | 0.4885 | 0.4885 | |
|
| 1.3156 | 2.0 | 148 | 1.1964 | 0.5541 | 0.5627 | 0.575 | 0.575 | |
|
| 1.0728 | 3.0 | 222 | 1.1077 | 0.6001 | 0.6189 | 0.5981 | 0.5981 | |
|
| 0.9239 | 4.0 | 296 | 1.0742 | 0.6324 | 0.6361 | 0.6365 | 0.6365 | |
|
| 0.7802 | 5.0 | 370 | 1.0834 | 0.6073 | 0.6333 | 0.6058 | 0.6058 | |
|
| 0.661 | 6.0 | 444 | 1.1733 | 0.5984 | 0.6166 | 0.5962 | 0.5962 | |
|
| 0.602 | 7.0 | 518 | 1.1786 | 0.5911 | 0.6193 | 0.5885 | 0.5885 | |
|
| 0.5391 | 8.0 | 592 | 1.2171 | 0.6156 | 0.6251 | 0.6154 | 0.6154 | |
|
| 0.4815 | 9.0 | 666 | 1.2566 | 0.6259 | 0.6399 | 0.625 | 0.625 | |
|
| 0.4548 | 10.0 | 740 | 1.2927 | 0.6233 | 0.6417 | 0.6212 | 0.6212 | |
|
| 0.4538 | 11.0 | 814 | 1.2969 | 0.6385 | 0.6461 | 0.6385 | 0.6385 | |
|
| 0.4119 | 12.0 | 888 | 1.3455 | 0.6376 | 0.6464 | 0.6365 | 0.6365 | |
|
| 0.3968 | 13.0 | 962 | 1.3709 | 0.6304 | 0.6413 | 0.6288 | 0.6288 | |
|
| 0.352 | 14.0 | 1036 | 1.3823 | 0.6246 | 0.6360 | 0.6231 | 0.6231 | |
|
| 0.3551 | 15.0 | 1110 | 1.3914 | 0.6372 | 0.6448 | 0.6365 | 0.6365 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.3 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|