debert-imeocap / README.md
sakren's picture
sakren/debert-imeocap
ddad4a4 verified
|
raw
history blame
2.82 kB
metadata
license: mit
base_model: microsoft/deberta-v3-base
tags:
  - generated_from_trainer
metrics:
  - f1
  - precision
  - recall
  - accuracy
model-index:
  - name: debert-imeocap
    results: []

debert-imeocap

This model is a fine-tuned version of microsoft/deberta-v3-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8660
  • F1: 0.6185
  • Precision: 0.6337
  • Recall: 0.6154
  • Accuracy: 0.6154

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss F1 Precision Recall Accuracy
0.4637 1.0 74 1.3864 0.6129 0.6262 0.6115 0.6115
0.3815 2.0 148 1.3801 0.6193 0.6348 0.6173 0.6173
0.3363 3.0 222 1.6944 0.6077 0.6297 0.6077 0.6077
0.31 4.0 296 1.6945 0.5995 0.6285 0.5942 0.5942
0.2885 5.0 370 1.5945 0.6218 0.6306 0.6192 0.6192
0.2594 6.0 444 1.7662 0.6279 0.6396 0.625 0.625
0.2319 7.0 518 1.7093 0.6210 0.6321 0.6173 0.6173
0.2306 8.0 592 1.8068 0.6279 0.6341 0.6288 0.6288
0.2167 9.0 666 1.7306 0.6376 0.6444 0.6346 0.6346
0.2158 10.0 740 1.8745 0.6262 0.6318 0.6269 0.6269
0.222 11.0 814 1.8323 0.6200 0.6348 0.6173 0.6173
0.2152 12.0 888 1.8576 0.6246 0.6363 0.6212 0.6212
0.226 13.0 962 1.8880 0.6343 0.6411 0.6308 0.6308
0.2097 14.0 1036 1.8884 0.6152 0.6326 0.6115 0.6115
0.2192 15.0 1110 1.8660 0.6185 0.6337 0.6154 0.6154

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.1.2
  • Datasets 2.18.0
  • Tokenizers 0.15.2