distil-bert-imeocap / README.md
sakren's picture
sakren/distil-bert-imeocap
be78909 verified
metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - f1
  - precision
  - recall
  - accuracy
model-index:
  - name: distil-bert-imeocap
    results: []

distil-bert-imeocap

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8186
  • F1: 0.6341
  • Precision: 0.6365
  • Recall: 0.6365
  • Accuracy: 0.6365

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss F1 Precision Recall Accuracy
0.1961 1.0 74 1.6080 0.6314 0.6285 0.6385 0.6385
0.1845 2.0 148 1.7125 0.6298 0.6317 0.6385 0.6385
0.1717 3.0 222 1.9402 0.6226 0.6364 0.6385 0.6385
0.176 4.0 296 1.8028 0.6169 0.6253 0.6192 0.6192
0.1679 5.0 370 1.6948 0.6243 0.6285 0.625 0.625
0.168 6.0 444 1.8304 0.6317 0.6336 0.6385 0.6385
0.1617 7.0 518 1.7457 0.6286 0.6310 0.6308 0.6308
0.1677 8.0 592 1.8071 0.6422 0.6382 0.65 0.65
0.171 9.0 666 1.8177 0.6323 0.6326 0.6385 0.6385
0.1683 10.0 740 1.8265 0.6347 0.6370 0.6365 0.6365
0.1808 11.0 814 1.7734 0.6304 0.6365 0.6308 0.6308
0.1757 12.0 888 1.7727 0.6244 0.6296 0.6231 0.6231
0.1897 13.0 962 1.8449 0.6374 0.6377 0.6404 0.6404
0.1674 14.0 1036 1.8244 0.6455 0.6462 0.6481 0.6481
0.1746 15.0 1110 1.8186 0.6341 0.6365 0.6365 0.6365

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.1.2
  • Datasets 2.18.0
  • Tokenizers 0.15.2