salbatarni's picture
End of training
55673b1 verified
metadata
base_model: aubmindlab/bert-base-arabertv02
tags:
  - generated_from_trainer
model-index:
  - name: arabert_baseline_grammar_task2_fold1
    results: []

arabert_baseline_grammar_task2_fold1

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5805
  • Qwk: 0.4573
  • Mse: 0.5856

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Qwk Mse
No log 0.3333 2 4.5766 -0.0114 4.6757
No log 0.6667 4 1.8451 0.0840 1.9011
No log 1.0 6 1.0385 0.0 1.0614
No log 1.3333 8 0.8509 0.0 0.8474
No log 1.6667 10 0.8477 0.0 0.8402
No log 2.0 12 0.7153 0.2184 0.7165
No log 2.3333 14 0.6748 0.2687 0.6856
No log 2.6667 16 0.7113 0.1912 0.7272
No log 3.0 18 0.7379 0.1902 0.7546
No log 3.3333 20 0.6880 0.1923 0.7014
No log 3.6667 22 0.6478 0.3544 0.6544
No log 4.0 24 0.6652 0.3849 0.6682
No log 4.3333 26 0.6717 0.4573 0.6748
No log 4.6667 28 0.6419 0.4304 0.6475
No log 5.0 30 0.6314 0.4573 0.6355
No log 5.3333 32 0.6776 0.3849 0.6787
No log 5.6667 34 0.6654 0.3849 0.6671
No log 6.0 36 0.6226 0.4573 0.6260
No log 6.3333 38 0.5977 0.3544 0.6024
No log 6.6667 40 0.5953 0.1306 0.6010
No log 7.0 42 0.5909 0.1306 0.5966
No log 7.3333 44 0.5860 0.1306 0.5916
No log 7.6667 46 0.5891 0.3544 0.5944
No log 8.0 48 0.6067 0.4573 0.6111
No log 8.3333 50 0.6190 0.4573 0.6228
No log 8.6667 52 0.6206 0.4573 0.6243
No log 9.0 54 0.6083 0.4573 0.6124
No log 9.3333 56 0.5947 0.4573 0.5993
No log 9.6667 58 0.5850 0.4573 0.5899
No log 10.0 60 0.5805 0.4573 0.5856

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1