|
--- |
|
base_model: aubmindlab/bert-base-arabertv02 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: arabert_baseline_organization_task7_fold1 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# arabert_baseline_organization_task7_fold1 |
|
|
|
This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6217 |
|
- Qwk: 0.4969 |
|
- Mse: 0.6213 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | |
|
|:-------------:|:------:|:----:|:---------------:|:------:|:------:| |
|
| No log | 0.3333 | 2 | 1.0245 | 0.3758 | 1.0297 | |
|
| No log | 0.6667 | 4 | 0.7919 | 0.5312 | 0.8059 | |
|
| No log | 1.0 | 6 | 0.8469 | 0.6400 | 0.8626 | |
|
| No log | 1.3333 | 8 | 0.7621 | 0.3793 | 0.7785 | |
|
| No log | 1.6667 | 10 | 0.8831 | 0.2326 | 0.8970 | |
|
| No log | 2.0 | 12 | 0.7493 | 0.4 | 0.7628 | |
|
| No log | 2.3333 | 14 | 0.4924 | 0.6165 | 0.5052 | |
|
| No log | 2.6667 | 16 | 0.4499 | 0.6571 | 0.4612 | |
|
| No log | 3.0 | 18 | 0.4936 | 0.6203 | 0.5029 | |
|
| No log | 3.3333 | 20 | 0.7252 | 0.4224 | 0.7311 | |
|
| No log | 3.6667 | 22 | 0.9227 | 0.3657 | 0.9263 | |
|
| No log | 4.0 | 24 | 0.8957 | 0.3657 | 0.8980 | |
|
| No log | 4.3333 | 26 | 0.7242 | 0.4211 | 0.7260 | |
|
| No log | 4.6667 | 28 | 0.5595 | 0.6203 | 0.5620 | |
|
| No log | 5.0 | 30 | 0.4521 | 0.6024 | 0.4559 | |
|
| No log | 5.3333 | 32 | 0.4402 | 0.6786 | 0.4437 | |
|
| No log | 5.6667 | 34 | 0.4703 | 0.6909 | 0.4728 | |
|
| No log | 6.0 | 36 | 0.6144 | 0.5 | 0.6153 | |
|
| No log | 6.3333 | 38 | 0.7150 | 0.4969 | 0.7150 | |
|
| No log | 6.6667 | 40 | 0.7022 | 0.4969 | 0.7024 | |
|
| No log | 7.0 | 42 | 0.6409 | 0.5 | 0.6418 | |
|
| No log | 7.3333 | 44 | 0.5912 | 0.5 | 0.5923 | |
|
| No log | 7.6667 | 46 | 0.5457 | 0.6341 | 0.5469 | |
|
| No log | 8.0 | 48 | 0.5073 | 0.6909 | 0.5089 | |
|
| No log | 8.3333 | 50 | 0.5143 | 0.6909 | 0.5157 | |
|
| No log | 8.6667 | 52 | 0.5540 | 0.6341 | 0.5549 | |
|
| No log | 9.0 | 54 | 0.5883 | 0.6272 | 0.5886 | |
|
| No log | 9.3333 | 56 | 0.6103 | 0.4969 | 0.6102 | |
|
| No log | 9.6667 | 58 | 0.6204 | 0.4969 | 0.6200 | |
|
| No log | 10.0 | 60 | 0.6217 | 0.4969 | 0.6213 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.0 |
|
- Pytorch 2.4.0 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|