|
--- |
|
base_model: aubmindlab/bert-base-arabertv02 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: arabert_baseline_relevance_task1_fold0 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# arabert_baseline_relevance_task1_fold0 |
|
|
|
This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2514 |
|
- Qwk: 0.0808 |
|
- Mse: 0.2559 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | |
|
|:-------------:|:------:|:----:|:---------------:|:-------:|:------:| |
|
| No log | 0.3333 | 2 | 1.1076 | -0.0049 | 1.0949 | |
|
| No log | 0.6667 | 4 | 0.2779 | 0.0 | 0.2800 | |
|
| No log | 1.0 | 6 | 0.2271 | 0.3467 | 0.2294 | |
|
| No log | 1.3333 | 8 | 0.2361 | 0.1667 | 0.2359 | |
|
| No log | 1.6667 | 10 | 0.1985 | 0.1250 | 0.2028 | |
|
| No log | 2.0 | 12 | 0.2232 | 0.0 | 0.2304 | |
|
| No log | 2.3333 | 14 | 0.2167 | 0.0 | 0.2237 | |
|
| No log | 2.6667 | 16 | 0.2206 | 0.0 | 0.2259 | |
|
| No log | 3.0 | 18 | 0.2075 | 0.0 | 0.2127 | |
|
| No log | 3.3333 | 20 | 0.2078 | 0.0 | 0.2132 | |
|
| No log | 3.6667 | 22 | 0.2183 | 0.0 | 0.2235 | |
|
| No log | 4.0 | 24 | 0.2326 | 0.0 | 0.2375 | |
|
| No log | 4.3333 | 26 | 0.2498 | 0.0392 | 0.2543 | |
|
| No log | 4.6667 | 28 | 0.2547 | 0.0392 | 0.2590 | |
|
| No log | 5.0 | 30 | 0.2514 | 0.0808 | 0.2559 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.0 |
|
- Pytorch 2.4.0 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|