salbatarni's picture
End of training
9e8ebd1 verified
---
base_model: aubmindlab/bert-base-arabertv02
tags:
- generated_from_trainer
model-index:
- name: arabert_baseline_relevance_task2_fold0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# arabert_baseline_relevance_task2_fold0
This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1850
- Qwk: 0.0597
- Mse: 0.1935
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
|:-------------:|:------:|:----:|:---------------:|:-------:|:------:|
| No log | 0.3333 | 2 | 0.9871 | 0.0205 | 0.9763 |
| No log | 0.6667 | 4 | 0.1822 | 0.1049 | 0.1846 |
| No log | 1.0 | 6 | 0.2694 | -0.0176 | 0.2773 |
| No log | 1.3333 | 8 | 0.2612 | -0.0791 | 0.2700 |
| No log | 1.6667 | 10 | 0.2291 | 0.0187 | 0.2405 |
| No log | 2.0 | 12 | 0.1605 | 0.0755 | 0.1675 |
| No log | 2.3333 | 14 | 0.1556 | 0.1049 | 0.1617 |
| No log | 2.6667 | 16 | 0.1455 | 0.1370 | 0.1500 |
| No log | 3.0 | 18 | 0.1386 | 0.0 | 0.1414 |
| No log | 3.3333 | 20 | 0.1423 | 0.0 | 0.1448 |
| No log | 3.6667 | 22 | 0.1393 | 0.0 | 0.1429 |
| No log | 4.0 | 24 | 0.1807 | 0.4815 | 0.1875 |
| No log | 4.3333 | 26 | 0.2622 | 0.0 | 0.2718 |
| No log | 4.6667 | 28 | 0.2372 | 0.0 | 0.2476 |
| No log | 5.0 | 30 | 0.1765 | -0.1290 | 0.1845 |
| No log | 5.3333 | 32 | 0.1633 | 0.0483 | 0.1688 |
| No log | 5.6667 | 34 | 0.1551 | 0.0755 | 0.1613 |
| No log | 6.0 | 36 | 0.1689 | 0.1674 | 0.1757 |
| No log | 6.3333 | 38 | 0.1736 | 0.2687 | 0.1798 |
| No log | 6.6667 | 40 | 0.1678 | 0.2150 | 0.1732 |
| No log | 7.0 | 42 | 0.1581 | 0.1250 | 0.1631 |
| No log | 7.3333 | 44 | 0.1540 | 0.0526 | 0.1591 |
| No log | 7.6667 | 46 | 0.1536 | 0.0526 | 0.1590 |
| No log | 8.0 | 48 | 0.1603 | 0.1250 | 0.1666 |
| No log | 8.3333 | 50 | 0.1716 | 0.2150 | 0.1790 |
| No log | 8.6667 | 52 | 0.1797 | 0.0597 | 0.1878 |
| No log | 9.0 | 54 | 0.1828 | 0.0597 | 0.1911 |
| No log | 9.3333 | 56 | 0.1841 | 0.0597 | 0.1925 |
| No log | 9.6667 | 58 | 0.1849 | 0.0597 | 0.1933 |
| No log | 10.0 | 60 | 0.1850 | 0.0597 | 0.1935 |
### Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1