|
--- |
|
base_model: aubmindlab/bert-base-arabertv02 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: arabert_baseline_relevance_task2_fold0 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# arabert_baseline_relevance_task2_fold0 |
|
|
|
This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1850 |
|
- Qwk: 0.0597 |
|
- Mse: 0.1935 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | |
|
|:-------------:|:------:|:----:|:---------------:|:-------:|:------:| |
|
| No log | 0.3333 | 2 | 0.9871 | 0.0205 | 0.9763 | |
|
| No log | 0.6667 | 4 | 0.1822 | 0.1049 | 0.1846 | |
|
| No log | 1.0 | 6 | 0.2694 | -0.0176 | 0.2773 | |
|
| No log | 1.3333 | 8 | 0.2612 | -0.0791 | 0.2700 | |
|
| No log | 1.6667 | 10 | 0.2291 | 0.0187 | 0.2405 | |
|
| No log | 2.0 | 12 | 0.1605 | 0.0755 | 0.1675 | |
|
| No log | 2.3333 | 14 | 0.1556 | 0.1049 | 0.1617 | |
|
| No log | 2.6667 | 16 | 0.1455 | 0.1370 | 0.1500 | |
|
| No log | 3.0 | 18 | 0.1386 | 0.0 | 0.1414 | |
|
| No log | 3.3333 | 20 | 0.1423 | 0.0 | 0.1448 | |
|
| No log | 3.6667 | 22 | 0.1393 | 0.0 | 0.1429 | |
|
| No log | 4.0 | 24 | 0.1807 | 0.4815 | 0.1875 | |
|
| No log | 4.3333 | 26 | 0.2622 | 0.0 | 0.2718 | |
|
| No log | 4.6667 | 28 | 0.2372 | 0.0 | 0.2476 | |
|
| No log | 5.0 | 30 | 0.1765 | -0.1290 | 0.1845 | |
|
| No log | 5.3333 | 32 | 0.1633 | 0.0483 | 0.1688 | |
|
| No log | 5.6667 | 34 | 0.1551 | 0.0755 | 0.1613 | |
|
| No log | 6.0 | 36 | 0.1689 | 0.1674 | 0.1757 | |
|
| No log | 6.3333 | 38 | 0.1736 | 0.2687 | 0.1798 | |
|
| No log | 6.6667 | 40 | 0.1678 | 0.2150 | 0.1732 | |
|
| No log | 7.0 | 42 | 0.1581 | 0.1250 | 0.1631 | |
|
| No log | 7.3333 | 44 | 0.1540 | 0.0526 | 0.1591 | |
|
| No log | 7.6667 | 46 | 0.1536 | 0.0526 | 0.1590 | |
|
| No log | 8.0 | 48 | 0.1603 | 0.1250 | 0.1666 | |
|
| No log | 8.3333 | 50 | 0.1716 | 0.2150 | 0.1790 | |
|
| No log | 8.6667 | 52 | 0.1797 | 0.0597 | 0.1878 | |
|
| No log | 9.0 | 54 | 0.1828 | 0.0597 | 0.1911 | |
|
| No log | 9.3333 | 56 | 0.1841 | 0.0597 | 0.1925 | |
|
| No log | 9.6667 | 58 | 0.1849 | 0.0597 | 0.1933 | |
|
| No log | 10.0 | 60 | 0.1850 | 0.0597 | 0.1935 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.0 |
|
- Pytorch 2.4.0 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|