|
--- |
|
base_model: aubmindlab/bert-base-arabertv02 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: arabert_baseline_relevance_task3_fold0 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# arabert_baseline_relevance_task3_fold0 |
|
|
|
This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2326 |
|
- Qwk: 0.0 |
|
- Mse: 0.2326 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | |
|
|:-------------:|:------:|:----:|:---------------:|:-------:|:------:| |
|
| No log | 0.6667 | 2 | 0.5604 | -0.0845 | 0.5490 | |
|
| No log | 1.3333 | 4 | 0.4316 | 0.0000 | 0.4136 | |
|
| No log | 2.0 | 6 | 0.4602 | -0.1579 | 0.4699 | |
|
| No log | 2.6667 | 8 | 0.2569 | 0.0294 | 0.2631 | |
|
| No log | 3.3333 | 10 | 0.2323 | 0.0 | 0.2316 | |
|
| No log | 4.0 | 12 | 0.3209 | 0.0 | 0.3171 | |
|
| No log | 4.6667 | 14 | 0.2901 | 0.0 | 0.2877 | |
|
| No log | 5.3333 | 16 | 0.2432 | 0.0 | 0.2433 | |
|
| No log | 6.0 | 18 | 0.2222 | 0.0 | 0.2222 | |
|
| No log | 6.6667 | 20 | 0.2264 | 0.0 | 0.2257 | |
|
| No log | 7.3333 | 22 | 0.2342 | 0.0 | 0.2329 | |
|
| No log | 8.0 | 24 | 0.2393 | 0.0 | 0.2375 | |
|
| No log | 8.6667 | 26 | 0.2361 | 0.0 | 0.2351 | |
|
| No log | 9.3333 | 28 | 0.2342 | 0.0 | 0.2338 | |
|
| No log | 10.0 | 30 | 0.2326 | 0.0 | 0.2326 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.0 |
|
- Pytorch 2.4.0 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|