salbatarni's picture
End of training
2a27d59 verified
|
raw
history blame
3.49 kB
---
base_model: aubmindlab/bert-base-arabertv02
tags:
- generated_from_trainer
model-index:
- name: arabert_baseline_vocabulary_task2_fold0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# arabert_baseline_vocabulary_task2_fold0
This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5710
- Qwk: 0.0911
- Mse: 0.5727
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
|:-------------:|:------:|:----:|:---------------:|:-------:|:------:|
| No log | 0.3333 | 2 | 5.7084 | -0.0071 | 5.7092 |
| No log | 0.6667 | 4 | 2.7119 | 0.0524 | 2.7198 |
| No log | 1.0 | 6 | 1.4034 | -0.0198 | 1.4046 |
| No log | 1.3333 | 8 | 0.6439 | 0.0396 | 0.6441 |
| No log | 1.6667 | 10 | 0.6138 | 0.0 | 0.6150 |
| No log | 2.0 | 12 | 0.6664 | 0.0 | 0.6682 |
| No log | 2.3333 | 14 | 0.6604 | -0.0925 | 0.6596 |
| No log | 2.6667 | 16 | 0.5976 | 0.0526 | 0.5979 |
| No log | 3.0 | 18 | 0.6250 | 0.1747 | 0.6254 |
| No log | 3.3333 | 20 | 0.6646 | 0.1021 | 0.6644 |
| No log | 3.6667 | 22 | 0.5974 | 0.2396 | 0.5967 |
| No log | 4.0 | 24 | 0.5442 | 0.0911 | 0.5440 |
| No log | 4.3333 | 26 | 0.5490 | 0.0289 | 0.5512 |
| No log | 4.6667 | 28 | 0.5728 | 0.0 | 0.5758 |
| No log | 5.0 | 30 | 0.5435 | 0.0 | 0.5463 |
| No log | 5.3333 | 32 | 0.4958 | 0.2794 | 0.4980 |
| No log | 5.6667 | 34 | 0.4795 | 0.2105 | 0.4813 |
| No log | 6.0 | 36 | 0.4887 | 0.2167 | 0.4894 |
| No log | 6.3333 | 38 | 0.4972 | 0.2222 | 0.4980 |
| No log | 6.6667 | 40 | 0.5094 | 0.2222 | 0.5094 |
| No log | 7.0 | 42 | 0.5328 | 0.1198 | 0.5321 |
| No log | 7.3333 | 44 | 0.5401 | 0.1064 | 0.5397 |
| No log | 7.6667 | 46 | 0.5403 | 0.1064 | 0.5409 |
| No log | 8.0 | 48 | 0.5495 | 0.0911 | 0.5517 |
| No log | 8.3333 | 50 | 0.5683 | 0.0735 | 0.5711 |
| No log | 8.6667 | 52 | 0.5763 | 0.0735 | 0.5791 |
| No log | 9.0 | 54 | 0.5754 | 0.0911 | 0.5779 |
| No log | 9.3333 | 56 | 0.5725 | 0.0911 | 0.5748 |
| No log | 9.6667 | 58 | 0.5717 | 0.0911 | 0.5736 |
| No log | 10.0 | 60 | 0.5710 | 0.0911 | 0.5727 |
### Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1