arabert_baseline_vocabulary_task3_fold1
This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2325
- Qwk: 0.2857
- Mse: 0.2437
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
---|---|---|---|---|---|
No log | 0.6667 | 2 | 3.6484 | 0.0328 | 3.6411 |
No log | 1.3333 | 4 | 1.3150 | 0.0541 | 1.3226 |
No log | 2.0 | 6 | 0.2810 | 0.0 | 0.2941 |
No log | 2.6667 | 8 | 0.2059 | 0.0 | 0.2199 |
No log | 3.3333 | 10 | 0.2435 | 0.0 | 0.2582 |
No log | 4.0 | 12 | 0.2557 | 0.0 | 0.2715 |
No log | 4.6667 | 14 | 0.2138 | 0.0 | 0.2290 |
No log | 5.3333 | 16 | 0.2031 | 0.0 | 0.2168 |
No log | 6.0 | 18 | 0.2284 | 0.0 | 0.2412 |
No log | 6.6667 | 20 | 0.2060 | 0.2857 | 0.2178 |
No log | 7.3333 | 22 | 0.2168 | 0.2857 | 0.2280 |
No log | 8.0 | 24 | 0.2244 | 0.2857 | 0.2354 |
No log | 8.6667 | 26 | 0.2313 | 0.2857 | 0.2422 |
No log | 9.3333 | 28 | 0.2311 | 0.2857 | 0.2422 |
No log | 10.0 | 30 | 0.2325 | 0.2857 | 0.2437 |
Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 4
Model tree for salbatarni/arabert_baseline_vocabulary_task3_fold1
Base model
aubmindlab/bert-base-arabertv02