|
--- |
|
base_model: aubmindlab/bert-base-arabertv02 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: arabert_baseline_vocabulary_task6_fold1 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# arabert_baseline_vocabulary_task6_fold1 |
|
|
|
This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4086 |
|
- Qwk: 0.7322 |
|
- Mse: 0.4086 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:| |
|
| No log | 0.5 | 2 | 1.1281 | 0.0558 | 1.1281 | |
|
| No log | 1.0 | 4 | 0.6605 | 0.4309 | 0.6605 | |
|
| No log | 1.5 | 6 | 0.8109 | 0.4615 | 0.8109 | |
|
| No log | 2.0 | 8 | 0.8404 | 0.3450 | 0.8404 | |
|
| No log | 2.5 | 10 | 0.7598 | 0.3277 | 0.7598 | |
|
| No log | 3.0 | 12 | 0.4728 | 0.4717 | 0.4728 | |
|
| No log | 3.5 | 14 | 0.4115 | 0.5238 | 0.4115 | |
|
| No log | 4.0 | 16 | 0.4736 | 0.7219 | 0.4736 | |
|
| No log | 4.5 | 18 | 0.4966 | 0.7135 | 0.4966 | |
|
| No log | 5.0 | 20 | 0.4737 | 0.6595 | 0.4737 | |
|
| No log | 5.5 | 22 | 0.4965 | 0.6595 | 0.4965 | |
|
| No log | 6.0 | 24 | 0.4565 | 0.7068 | 0.4565 | |
|
| No log | 6.5 | 26 | 0.5170 | 0.6595 | 0.5170 | |
|
| No log | 7.0 | 28 | 0.4977 | 0.6595 | 0.4977 | |
|
| No log | 7.5 | 30 | 0.4286 | 0.7322 | 0.4286 | |
|
| No log | 8.0 | 32 | 0.3945 | 0.7778 | 0.3945 | |
|
| No log | 8.5 | 34 | 0.3857 | 0.7778 | 0.3857 | |
|
| No log | 9.0 | 36 | 0.3903 | 0.7778 | 0.3903 | |
|
| No log | 9.5 | 38 | 0.4015 | 0.7778 | 0.4015 | |
|
| No log | 10.0 | 40 | 0.4086 | 0.7322 | 0.4086 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.0 |
|
- Pytorch 2.4.0 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|