salbatarni's picture
End of training
9a92dfe verified
metadata
base_model: aubmindlab/bert-base-arabertv02
tags:
  - generated_from_trainer
model-index:
  - name: arabert_cross_organization_task1_fold1
    results: []

arabert_cross_organization_task1_fold1

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9947
  • Qwk: 0.0679
  • Mse: 0.9916

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Qwk Mse
No log 0.125 2 5.2049 -0.0008 5.2020
No log 0.25 4 1.9284 -0.0122 1.9256
No log 0.375 6 1.0209 0.0513 1.0167
No log 0.5 8 0.8405 0.0824 0.8373
No log 0.625 10 0.8656 0.1060 0.8628
No log 0.75 12 0.8332 0.1240 0.8306
No log 0.875 14 0.8775 0.0730 0.8754
No log 1.0 16 0.9183 0.0104 0.9162
No log 1.125 18 0.9057 0.0508 0.9032
No log 1.25 20 0.8886 0.1273 0.8859
No log 1.375 22 0.9957 0.0849 0.9930
No log 1.5 24 1.0595 0.1181 1.0564
No log 1.625 26 1.2289 0.0182 1.2258
No log 1.75 28 1.2976 0.0182 1.2948
No log 1.875 30 0.9648 0.1402 0.9617
No log 2.0 32 0.9714 0.1016 0.9684
No log 2.125 34 0.9511 0.0710 0.9483
No log 2.25 36 0.8591 0.1425 0.8564
No log 2.375 38 0.8696 0.1182 0.8667
No log 2.5 40 1.0662 0.0360 1.0635
No log 2.625 42 1.1724 0.0360 1.1696
No log 2.75 44 1.3100 0.0182 1.3071
No log 2.875 46 1.3304 0.0182 1.3275
No log 3.0 48 1.0676 0.0424 1.0645
No log 3.125 50 0.9732 0.0668 0.9701
No log 3.25 52 1.1173 0.0279 1.1143
No log 3.375 54 1.2420 0.0182 1.2393
No log 3.5 56 1.1410 0.0155 1.1382
No log 3.625 58 0.9316 0.0268 0.9285
No log 3.75 60 0.8907 0.1122 0.8876
No log 3.875 62 1.0183 0.0253 1.0153
No log 4.0 64 1.1271 0.0279 1.1242
No log 4.125 66 1.1742 0.0300 1.1712
No log 4.25 68 1.2066 0.0682 1.2034
No log 4.375 70 1.2604 0.0377 1.2572
No log 4.5 72 1.1679 0.0830 1.1646
No log 4.625 74 1.1770 0.0966 1.1739
No log 4.75 76 1.1163 0.0966 1.1131
No log 4.875 78 0.9754 0.0695 0.9721
No log 5.0 80 0.9489 0.0767 0.9456
No log 5.125 82 0.9900 0.0994 0.9868
No log 5.25 84 0.8622 0.0654 0.8588
No log 5.375 86 0.8621 0.1028 0.8586
No log 5.5 88 1.0043 0.0807 1.0011
No log 5.625 90 1.0565 0.0448 1.0533
No log 5.75 92 0.9899 0.0848 0.9866
No log 5.875 94 1.1141 0.0466 1.1111
No log 6.0 96 1.3040 0.0906 1.3012
No log 6.125 98 1.2856 0.1112 1.2829
No log 6.25 100 1.3671 0.0962 1.3644
No log 6.375 102 1.2601 0.1091 1.2574
No log 6.5 104 1.2039 0.1595 1.2011
No log 6.625 106 1.1272 0.0913 1.1244
No log 6.75 108 1.0754 0.0958 1.0725
No log 6.875 110 1.0818 0.0777 1.0790
No log 7.0 112 1.0175 0.0670 1.0146
No log 7.125 114 0.9552 0.0569 0.9521
No log 7.25 116 0.8938 0.1278 0.8906
No log 7.375 118 0.9486 0.0697 0.9455
No log 7.5 120 0.9351 0.0773 0.9319
No log 7.625 122 0.8928 0.0870 0.8895
No log 7.75 124 0.8558 0.1373 0.8524
No log 7.875 126 0.8561 0.1606 0.8527
No log 8.0 128 0.9205 0.0389 0.9174
No log 8.125 130 1.0514 0.0941 1.0484
No log 8.25 132 1.0795 0.1246 1.0765
No log 8.375 134 1.0151 0.0977 1.0120
No log 8.5 136 0.9815 0.0716 0.9784
No log 8.625 138 0.9817 0.0668 0.9786
No log 8.75 140 0.9721 0.0597 0.9690
No log 8.875 142 0.9865 0.0668 0.9834
No log 9.0 144 0.9956 0.0716 0.9925
No log 9.125 146 0.9824 0.0807 0.9793
No log 9.25 148 0.9599 0.0721 0.9568
No log 9.375 150 0.9488 0.0858 0.9456
No log 9.5 152 0.9443 0.0858 0.9411
No log 9.625 154 0.9603 0.0721 0.9572
No log 9.75 156 0.9767 0.0770 0.9735
No log 9.875 158 0.9906 0.0679 0.9874
No log 10.0 160 0.9947 0.0679 0.9916

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1