salbatarni's picture
End of training
31a49ea verified
metadata
base_model: aubmindlab/bert-base-arabertv02
tags:
  - generated_from_trainer
model-index:
  - name: arabert_cross_organization_task1_fold3
    results: []

arabert_cross_organization_task1_fold3

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5415
  • Qwk: 0.7472
  • Mse: 0.5415

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Qwk Mse
No log 0.1333 2 1.8315 0.1530 1.8315
No log 0.2667 4 1.4232 0.1303 1.4232
No log 0.4 6 1.3057 0.4221 1.3057
No log 0.5333 8 0.9837 0.5056 0.9837
No log 0.6667 10 0.9513 0.7091 0.9513
No log 0.8 12 0.8371 0.7415 0.8371
No log 0.9333 14 0.7233 0.6918 0.7233
No log 1.0667 16 0.6922 0.7196 0.6922
No log 1.2 18 0.6535 0.7225 0.6535
No log 1.3333 20 0.6214 0.6382 0.6214
No log 1.4667 22 0.6214 0.6481 0.6214
No log 1.6 24 0.6577 0.6929 0.6577
No log 1.7333 26 0.6144 0.6652 0.6144
No log 1.8667 28 0.7474 0.5722 0.7474
No log 2.0 30 0.6810 0.6294 0.6810
No log 2.1333 32 0.6202 0.7358 0.6202
No log 2.2667 34 0.6151 0.6751 0.6151
No log 2.4 36 0.6002 0.6738 0.6002
No log 2.5333 38 0.5749 0.7000 0.5749
No log 2.6667 40 0.5666 0.7675 0.5666
No log 2.8 42 0.6051 0.7937 0.6051
No log 2.9333 44 0.5435 0.7839 0.5435
No log 3.0667 46 0.5462 0.6799 0.5462
No log 3.2 48 0.5199 0.7618 0.5199
No log 3.3333 50 0.5686 0.7827 0.5686
No log 3.4667 52 0.5681 0.7750 0.5681
No log 3.6 54 0.5202 0.7756 0.5202
No log 3.7333 56 0.5295 0.7412 0.5295
No log 3.8667 58 0.5478 0.7632 0.5478
No log 4.0 60 0.5733 0.7573 0.5733
No log 4.1333 62 0.6257 0.7566 0.6257
No log 4.2667 64 0.5977 0.7451 0.5977
No log 4.4 66 0.6316 0.6778 0.6316
No log 4.5333 68 0.5693 0.7216 0.5693
No log 4.6667 70 0.5614 0.7730 0.5614
No log 4.8 72 0.5561 0.7771 0.5561
No log 4.9333 74 0.5439 0.7692 0.5439
No log 5.0667 76 0.5722 0.7788 0.5722
No log 5.2 78 0.5816 0.7777 0.5816
No log 5.3333 80 0.5828 0.7436 0.5828
No log 5.4667 82 0.5916 0.6944 0.5916
No log 5.6 84 0.5655 0.7296 0.5655
No log 5.7333 86 0.5767 0.7728 0.5767
No log 5.8667 88 0.5590 0.7795 0.5590
No log 6.0 90 0.5207 0.7385 0.5207
No log 6.1333 92 0.5177 0.7374 0.5177
No log 6.2667 94 0.5230 0.7756 0.5230
No log 6.4 96 0.5599 0.7771 0.5599
No log 6.5333 98 0.5687 0.7802 0.5687
No log 6.6667 100 0.5450 0.7589 0.5450
No log 6.8 102 0.5470 0.7329 0.5470
No log 6.9333 104 0.5539 0.7073 0.5539
No log 7.0667 106 0.5586 0.7035 0.5586
No log 7.2 108 0.5647 0.7449 0.5647
No log 7.3333 110 0.5807 0.7533 0.5807
No log 7.4667 112 0.5667 0.7369 0.5667
No log 7.6 114 0.5602 0.7153 0.5602
No log 7.7333 116 0.5570 0.7251 0.5570
No log 7.8667 118 0.5524 0.7335 0.5524
No log 8.0 120 0.5563 0.7569 0.5563
No log 8.1333 122 0.5503 0.7474 0.5503
No log 8.2667 124 0.5434 0.7544 0.5434
No log 8.4 126 0.5579 0.7695 0.5579
No log 8.5333 128 0.5668 0.7794 0.5668
No log 8.6667 130 0.5537 0.7567 0.5537
No log 8.8 132 0.5391 0.7511 0.5391
No log 8.9333 134 0.5365 0.7457 0.5365
No log 9.0667 136 0.5367 0.7452 0.5367
No log 9.2 138 0.5391 0.7439 0.5391
No log 9.3333 140 0.5431 0.7438 0.5431
No log 9.4667 142 0.5435 0.7438 0.5435
No log 9.6 144 0.5455 0.7477 0.5455
No log 9.7333 146 0.5440 0.7438 0.5440
No log 9.8667 148 0.5422 0.7427 0.5422
No log 10.0 150 0.5415 0.7472 0.5415

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1