arabert_cross_organization_task3_fold5
This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4649
- Qwk: 0.6602
- Mse: 0.4652
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
---|---|---|---|---|---|
No log | 0.125 | 2 | 1.3614 | 0.1417 | 1.3607 |
No log | 0.25 | 4 | 0.9919 | 0.1465 | 0.9922 |
No log | 0.375 | 6 | 0.7852 | 0.5086 | 0.7857 |
No log | 0.5 | 8 | 0.8360 | 0.6182 | 0.8371 |
No log | 0.625 | 10 | 0.6409 | 0.7584 | 0.6421 |
No log | 0.75 | 12 | 0.5760 | 0.6105 | 0.5765 |
No log | 0.875 | 14 | 0.5769 | 0.7460 | 0.5780 |
No log | 1.0 | 16 | 0.5277 | 0.7247 | 0.5287 |
No log | 1.125 | 18 | 0.5309 | 0.7698 | 0.5319 |
No log | 1.25 | 20 | 0.6352 | 0.7920 | 0.6365 |
No log | 1.375 | 22 | 0.4636 | 0.6839 | 0.4644 |
No log | 1.5 | 24 | 0.4773 | 0.7038 | 0.4782 |
No log | 1.625 | 26 | 0.5174 | 0.7610 | 0.5185 |
No log | 1.75 | 28 | 0.5482 | 0.7835 | 0.5494 |
No log | 1.875 | 30 | 0.4822 | 0.7417 | 0.4830 |
No log | 2.0 | 32 | 0.4561 | 0.6787 | 0.4566 |
No log | 2.125 | 34 | 0.4716 | 0.7343 | 0.4723 |
No log | 2.25 | 36 | 0.5650 | 0.7930 | 0.5660 |
No log | 2.375 | 38 | 0.4723 | 0.7646 | 0.4729 |
No log | 2.5 | 40 | 0.4662 | 0.6525 | 0.4664 |
No log | 2.625 | 42 | 0.4420 | 0.7033 | 0.4425 |
No log | 2.75 | 44 | 0.5038 | 0.7717 | 0.5047 |
No log | 2.875 | 46 | 0.5557 | 0.7833 | 0.5567 |
No log | 3.0 | 48 | 0.4661 | 0.7378 | 0.4667 |
No log | 3.125 | 50 | 0.4772 | 0.6547 | 0.4774 |
No log | 3.25 | 52 | 0.4713 | 0.6765 | 0.4715 |
No log | 3.375 | 54 | 0.4755 | 0.7516 | 0.4761 |
No log | 3.5 | 56 | 0.4959 | 0.7626 | 0.4966 |
No log | 3.625 | 58 | 0.4637 | 0.7460 | 0.4642 |
No log | 3.75 | 60 | 0.4762 | 0.7443 | 0.4768 |
No log | 3.875 | 62 | 0.4669 | 0.7437 | 0.4674 |
No log | 4.0 | 64 | 0.4555 | 0.7387 | 0.4559 |
No log | 4.125 | 66 | 0.4440 | 0.7154 | 0.4444 |
No log | 4.25 | 68 | 0.4456 | 0.6951 | 0.4460 |
No log | 4.375 | 70 | 0.4452 | 0.7223 | 0.4457 |
No log | 4.5 | 72 | 0.4717 | 0.7461 | 0.4723 |
No log | 4.625 | 74 | 0.4611 | 0.7342 | 0.4616 |
No log | 4.75 | 76 | 0.4659 | 0.7176 | 0.4664 |
No log | 4.875 | 78 | 0.4599 | 0.7400 | 0.4604 |
No log | 5.0 | 80 | 0.4602 | 0.7421 | 0.4608 |
No log | 5.125 | 82 | 0.4454 | 0.7202 | 0.4458 |
No log | 5.25 | 84 | 0.4601 | 0.6651 | 0.4603 |
No log | 5.375 | 86 | 0.4520 | 0.6947 | 0.4522 |
No log | 5.5 | 88 | 0.4471 | 0.7201 | 0.4474 |
No log | 5.625 | 90 | 0.4466 | 0.6992 | 0.4469 |
No log | 5.75 | 92 | 0.4632 | 0.6619 | 0.4633 |
No log | 5.875 | 94 | 0.4736 | 0.6395 | 0.4737 |
No log | 6.0 | 96 | 0.4485 | 0.6918 | 0.4488 |
No log | 6.125 | 98 | 0.4448 | 0.7136 | 0.4453 |
No log | 6.25 | 100 | 0.4413 | 0.6987 | 0.4417 |
No log | 6.375 | 102 | 0.4402 | 0.7137 | 0.4406 |
No log | 6.5 | 104 | 0.4399 | 0.7159 | 0.4404 |
No log | 6.625 | 106 | 0.4462 | 0.7259 | 0.4467 |
No log | 6.75 | 108 | 0.4442 | 0.7166 | 0.4447 |
No log | 6.875 | 110 | 0.4566 | 0.6877 | 0.4570 |
No log | 7.0 | 112 | 0.4729 | 0.6802 | 0.4732 |
No log | 7.125 | 114 | 0.4857 | 0.6695 | 0.4859 |
No log | 7.25 | 116 | 0.4685 | 0.7000 | 0.4689 |
No log | 7.375 | 118 | 0.4610 | 0.7218 | 0.4616 |
No log | 7.5 | 120 | 0.4550 | 0.7174 | 0.4555 |
No log | 7.625 | 122 | 0.4572 | 0.6892 | 0.4576 |
No log | 7.75 | 124 | 0.4506 | 0.7015 | 0.4510 |
No log | 7.875 | 126 | 0.4454 | 0.7045 | 0.4459 |
No log | 8.0 | 128 | 0.4457 | 0.7284 | 0.4464 |
No log | 8.125 | 130 | 0.4455 | 0.7283 | 0.4461 |
No log | 8.25 | 132 | 0.4411 | 0.7309 | 0.4416 |
No log | 8.375 | 134 | 0.4413 | 0.7252 | 0.4418 |
No log | 8.5 | 136 | 0.4455 | 0.6852 | 0.4459 |
No log | 8.625 | 138 | 0.4564 | 0.6632 | 0.4567 |
No log | 8.75 | 140 | 0.4538 | 0.6632 | 0.4541 |
No log | 8.875 | 142 | 0.4468 | 0.7039 | 0.4473 |
No log | 9.0 | 144 | 0.4474 | 0.7177 | 0.4479 |
No log | 9.125 | 146 | 0.4490 | 0.7156 | 0.4496 |
No log | 9.25 | 148 | 0.4504 | 0.7156 | 0.4510 |
No log | 9.375 | 150 | 0.4516 | 0.7127 | 0.4521 |
No log | 9.5 | 152 | 0.4547 | 0.6898 | 0.4551 |
No log | 9.625 | 154 | 0.4599 | 0.6702 | 0.4603 |
No log | 9.75 | 156 | 0.4646 | 0.6602 | 0.4649 |
No log | 9.875 | 158 | 0.4655 | 0.6602 | 0.4658 |
No log | 10.0 | 160 | 0.4649 | 0.6602 | 0.4652 |
Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 2
Model tree for salbatarni/arabert_cross_organization_task3_fold5
Base model
aubmindlab/bert-base-arabertv02