Edit model card

arabert_cross_organization_task4_fold1

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7438
  • Qwk: 0.4143
  • Mse: 0.7438

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Qwk Mse
No log 0.1176 2 3.2005 0.0155 3.2005
No log 0.2353 4 1.7053 -0.0034 1.7053
No log 0.3529 6 1.1027 0.1636 1.1027
No log 0.4706 8 1.0959 0.1953 1.0959
No log 0.5882 10 1.1008 0.2356 1.1008
No log 0.7059 12 0.7123 0.3763 0.7123
No log 0.8235 14 0.7466 0.4020 0.7466
No log 0.9412 16 0.9174 0.3522 0.9174
No log 1.0588 18 0.9416 0.3154 0.9416
No log 1.1765 20 0.7002 0.3766 0.7002
No log 1.2941 22 0.6826 0.3709 0.6826
No log 1.4118 24 0.6996 0.3822 0.6996
No log 1.5294 26 0.6165 0.4733 0.6165
No log 1.6471 28 0.5696 0.5228 0.5696
No log 1.7647 30 0.7076 0.4534 0.7076
No log 1.8824 32 0.7251 0.4533 0.7251
No log 2.0 34 0.5922 0.4921 0.5922
No log 2.1176 36 0.5428 0.5484 0.5428
No log 2.2353 38 0.5662 0.5159 0.5662
No log 2.3529 40 0.6256 0.4714 0.6256
No log 2.4706 42 0.6008 0.4805 0.6008
No log 2.5882 44 0.5493 0.5367 0.5493
No log 2.7059 46 0.5855 0.5042 0.5855
No log 2.8235 48 0.6888 0.4526 0.6888
No log 2.9412 50 0.6594 0.4838 0.6594
No log 3.0588 52 0.5913 0.5174 0.5913
No log 3.1765 54 0.5440 0.5485 0.5440
No log 3.2941 56 0.5766 0.5008 0.5766
No log 3.4118 58 0.7541 0.4405 0.7541
No log 3.5294 60 0.6666 0.4686 0.6666
No log 3.6471 62 0.5454 0.5289 0.5454
No log 3.7647 64 0.5373 0.5502 0.5373
No log 3.8824 66 0.5811 0.4814 0.5811
No log 4.0 68 0.8522 0.3958 0.8522
No log 4.1176 70 0.9611 0.3420 0.9611
No log 4.2353 72 0.7150 0.4366 0.7150
No log 4.3529 74 0.5129 0.5461 0.5129
No log 4.4706 76 0.5130 0.5731 0.5130
No log 4.5882 78 0.5549 0.5002 0.5549
No log 4.7059 80 0.6423 0.4682 0.6423
No log 4.8235 82 0.6433 0.4655 0.6433
No log 4.9412 84 0.6814 0.4383 0.6814
No log 5.0588 86 0.6506 0.4536 0.6506
No log 5.1765 88 0.6845 0.4340 0.6845
No log 5.2941 90 0.6105 0.4691 0.6105
No log 5.4118 92 0.5818 0.5096 0.5818
No log 5.5294 94 0.6505 0.4675 0.6505
No log 5.6471 96 0.8762 0.4031 0.8762
No log 5.7647 98 0.9354 0.3979 0.9354
No log 5.8824 100 0.7273 0.4370 0.7273
No log 6.0 102 0.5439 0.5370 0.5439
No log 6.1176 104 0.5275 0.5934 0.5275
No log 6.2353 106 0.5389 0.5407 0.5389
No log 6.3529 108 0.6632 0.4439 0.6632
No log 6.4706 110 0.7438 0.4262 0.7438
No log 6.5882 112 0.7194 0.4386 0.7194
No log 6.7059 114 0.6649 0.4611 0.6649
No log 6.8235 116 0.6469 0.4620 0.6469
No log 6.9412 118 0.6869 0.4426 0.6869
No log 7.0588 120 0.6784 0.4431 0.6784
No log 7.1765 122 0.6099 0.4604 0.6099
No log 7.2941 124 0.6103 0.4469 0.6103
No log 7.4118 126 0.6514 0.4384 0.6514
No log 7.5294 128 0.7174 0.4218 0.7174
No log 7.6471 130 0.7205 0.4218 0.7205
No log 7.7647 132 0.6510 0.4378 0.6510
No log 7.8824 134 0.5851 0.4688 0.5851
No log 8.0 136 0.5810 0.4909 0.5810
No log 8.1176 138 0.6226 0.4464 0.6226
No log 8.2353 140 0.7068 0.4404 0.7068
No log 8.3529 142 0.8169 0.4120 0.8169
No log 8.4706 144 0.8268 0.4106 0.8268
No log 8.5882 146 0.7821 0.4211 0.7821
No log 8.7059 148 0.7186 0.4252 0.7186
No log 8.8235 150 0.6896 0.4345 0.6896
No log 8.9412 152 0.6602 0.4409 0.6602
No log 9.0588 154 0.6525 0.4435 0.6525
No log 9.1765 156 0.6577 0.4435 0.6577
No log 9.2941 158 0.6779 0.4325 0.6779
No log 9.4118 160 0.7177 0.4166 0.7177
No log 9.5294 162 0.7502 0.4106 0.7502
No log 9.6471 164 0.7522 0.4057 0.7522
No log 9.7647 166 0.7503 0.4106 0.7503
No log 9.8824 168 0.7475 0.4150 0.7475
No log 10.0 170 0.7438 0.4143 0.7438

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
0
Safetensors
Model size
135M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for salbatarni/arabert_cross_organization_task4_fold1

Finetuned
(688)
this model