metadata
base_model: aubmindlab/bert-base-arabertv02
tags:
- generated_from_trainer
model-index:
- name: arabert_cross_organization_task6_fold1
results: []
arabert_cross_organization_task6_fold1
This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8118
- Qwk: 0.4006
- Mse: 0.8118
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
---|---|---|---|---|---|
No log | 0.125 | 2 | 3.3727 | 0.0150 | 3.3727 |
No log | 0.25 | 4 | 1.5579 | 0.0418 | 1.5579 |
No log | 0.375 | 6 | 0.8889 | 0.1524 | 0.8889 |
No log | 0.5 | 8 | 0.7988 | 0.2568 | 0.7988 |
No log | 0.625 | 10 | 0.9045 | 0.2445 | 0.9045 |
No log | 0.75 | 12 | 1.3396 | 0.2180 | 1.3396 |
No log | 0.875 | 14 | 0.8588 | 0.3519 | 0.8588 |
No log | 1.0 | 16 | 0.5574 | 0.5527 | 0.5574 |
No log | 1.125 | 18 | 0.5553 | 0.5503 | 0.5553 |
No log | 1.25 | 20 | 0.8079 | 0.3672 | 0.8079 |
No log | 1.375 | 22 | 1.3052 | 0.2456 | 1.3052 |
No log | 1.5 | 24 | 0.9198 | 0.3104 | 0.9198 |
No log | 1.625 | 26 | 0.5541 | 0.5285 | 0.5541 |
No log | 1.75 | 28 | 0.5512 | 0.5290 | 0.5512 |
No log | 1.875 | 30 | 0.6121 | 0.4768 | 0.6121 |
No log | 2.0 | 32 | 0.8609 | 0.3129 | 0.8609 |
No log | 2.125 | 34 | 0.9886 | 0.2731 | 0.9886 |
No log | 2.25 | 36 | 0.8076 | 0.3795 | 0.8076 |
No log | 2.375 | 38 | 0.6513 | 0.4757 | 0.6513 |
No log | 2.5 | 40 | 0.6322 | 0.4656 | 0.6322 |
No log | 2.625 | 42 | 0.8239 | 0.3721 | 0.8239 |
No log | 2.75 | 44 | 0.8173 | 0.3657 | 0.8173 |
No log | 2.875 | 46 | 0.5953 | 0.4602 | 0.5953 |
No log | 3.0 | 48 | 0.4998 | 0.5491 | 0.4998 |
No log | 3.125 | 50 | 0.4994 | 0.5388 | 0.4994 |
No log | 3.25 | 52 | 0.5985 | 0.4558 | 0.5985 |
No log | 3.375 | 54 | 0.8360 | 0.3362 | 0.8360 |
No log | 3.5 | 56 | 0.7638 | 0.3694 | 0.7638 |
No log | 3.625 | 58 | 0.5758 | 0.4882 | 0.5758 |
No log | 3.75 | 60 | 0.5627 | 0.5091 | 0.5627 |
No log | 3.875 | 62 | 0.6464 | 0.4616 | 0.6464 |
No log | 4.0 | 64 | 0.7995 | 0.3939 | 0.7995 |
No log | 4.125 | 66 | 0.8090 | 0.4038 | 0.8090 |
No log | 4.25 | 68 | 0.7637 | 0.4270 | 0.7637 |
No log | 4.375 | 70 | 0.6773 | 0.4614 | 0.6773 |
No log | 4.5 | 72 | 0.6071 | 0.4596 | 0.6071 |
No log | 4.625 | 74 | 0.6404 | 0.4305 | 0.6404 |
No log | 4.75 | 76 | 0.7606 | 0.3850 | 0.7606 |
No log | 4.875 | 78 | 0.7167 | 0.4134 | 0.7167 |
No log | 5.0 | 80 | 0.6509 | 0.4134 | 0.6509 |
No log | 5.125 | 82 | 0.6798 | 0.4551 | 0.6798 |
No log | 5.25 | 84 | 0.7948 | 0.3986 | 0.7948 |
No log | 5.375 | 86 | 0.8620 | 0.3562 | 0.8620 |
No log | 5.5 | 88 | 0.8876 | 0.3559 | 0.8876 |
No log | 5.625 | 90 | 0.7515 | 0.4248 | 0.7515 |
No log | 5.75 | 92 | 0.7108 | 0.4577 | 0.7108 |
No log | 5.875 | 94 | 0.7862 | 0.4061 | 0.7862 |
No log | 6.0 | 96 | 0.8416 | 0.3952 | 0.8416 |
No log | 6.125 | 98 | 0.7997 | 0.4122 | 0.7997 |
No log | 6.25 | 100 | 0.8258 | 0.3932 | 0.8258 |
No log | 6.375 | 102 | 0.7838 | 0.4124 | 0.7838 |
No log | 6.5 | 104 | 0.7944 | 0.4076 | 0.7944 |
No log | 6.625 | 106 | 0.8231 | 0.3830 | 0.8231 |
No log | 6.75 | 108 | 0.7694 | 0.4134 | 0.7694 |
No log | 6.875 | 110 | 0.7985 | 0.3792 | 0.7985 |
No log | 7.0 | 112 | 0.8356 | 0.3632 | 0.8356 |
No log | 7.125 | 114 | 0.8848 | 0.3450 | 0.8848 |
No log | 7.25 | 116 | 0.8497 | 0.3620 | 0.8497 |
No log | 7.375 | 118 | 0.7434 | 0.4183 | 0.7434 |
No log | 7.5 | 120 | 0.7023 | 0.4781 | 0.7023 |
No log | 7.625 | 122 | 0.7498 | 0.4429 | 0.7498 |
No log | 7.75 | 124 | 0.9144 | 0.3785 | 0.9144 |
No log | 7.875 | 126 | 1.0497 | 0.3405 | 1.0497 |
No log | 8.0 | 128 | 1.0554 | 0.3506 | 1.0554 |
No log | 8.125 | 130 | 0.9425 | 0.3693 | 0.9425 |
No log | 8.25 | 132 | 0.8329 | 0.4324 | 0.8329 |
No log | 8.375 | 134 | 0.7552 | 0.4623 | 0.7552 |
No log | 8.5 | 136 | 0.7557 | 0.4559 | 0.7557 |
No log | 8.625 | 138 | 0.7684 | 0.4526 | 0.7684 |
No log | 8.75 | 140 | 0.8092 | 0.4060 | 0.8092 |
No log | 8.875 | 142 | 0.8508 | 0.3842 | 0.8508 |
No log | 9.0 | 144 | 0.8605 | 0.3817 | 0.8605 |
No log | 9.125 | 146 | 0.8641 | 0.3822 | 0.8641 |
No log | 9.25 | 148 | 0.8326 | 0.3939 | 0.8326 |
No log | 9.375 | 150 | 0.8206 | 0.3946 | 0.8206 |
No log | 9.5 | 152 | 0.7988 | 0.4013 | 0.7988 |
No log | 9.625 | 154 | 0.7932 | 0.4040 | 0.7932 |
No log | 9.75 | 156 | 0.7973 | 0.4040 | 0.7973 |
No log | 9.875 | 158 | 0.8061 | 0.4006 | 0.8061 |
No log | 10.0 | 160 | 0.8118 | 0.4006 | 0.8118 |
Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1