metadata
base_model: aubmindlab/bert-base-arabertv02
tags:
- generated_from_trainer
model-index:
- name: arabert_cross_organization_task6_fold5
results: []
arabert_cross_organization_task6_fold5
This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4946
- Qwk: 0.7585
- Mse: 0.4958
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
---|---|---|---|---|---|
No log | 0.125 | 2 | 1.3569 | 0.2073 | 1.3566 |
No log | 0.25 | 4 | 0.8917 | 0.3804 | 0.8926 |
No log | 0.375 | 6 | 1.3940 | 0.5002 | 1.3954 |
No log | 0.5 | 8 | 1.1581 | 0.5869 | 1.1599 |
No log | 0.625 | 10 | 0.8359 | 0.5005 | 0.8373 |
No log | 0.75 | 12 | 0.8352 | 0.6240 | 0.8368 |
No log | 0.875 | 14 | 0.7817 | 0.6808 | 0.7831 |
No log | 1.0 | 16 | 0.6321 | 0.7284 | 0.6335 |
No log | 1.125 | 18 | 0.5497 | 0.7013 | 0.5509 |
No log | 1.25 | 20 | 0.6330 | 0.7733 | 0.6344 |
No log | 1.375 | 22 | 0.9312 | 0.7286 | 0.9326 |
No log | 1.5 | 24 | 0.9410 | 0.7373 | 0.9424 |
No log | 1.625 | 26 | 0.6704 | 0.7704 | 0.6717 |
No log | 1.75 | 28 | 0.5140 | 0.6654 | 0.5150 |
No log | 1.875 | 30 | 0.5258 | 0.6207 | 0.5266 |
No log | 2.0 | 32 | 0.4993 | 0.7208 | 0.5003 |
No log | 2.125 | 34 | 0.5995 | 0.7661 | 0.6008 |
No log | 2.25 | 36 | 0.6850 | 0.7821 | 0.6865 |
No log | 2.375 | 38 | 0.6445 | 0.7839 | 0.6460 |
No log | 2.5 | 40 | 0.5426 | 0.7571 | 0.5438 |
No log | 2.625 | 42 | 0.5374 | 0.7584 | 0.5385 |
No log | 2.75 | 44 | 0.5401 | 0.7508 | 0.5413 |
No log | 2.875 | 46 | 0.5560 | 0.7716 | 0.5572 |
No log | 3.0 | 48 | 0.5460 | 0.7794 | 0.5472 |
No log | 3.125 | 50 | 0.5399 | 0.7800 | 0.5410 |
No log | 3.25 | 52 | 0.4966 | 0.7520 | 0.4976 |
No log | 3.375 | 54 | 0.4783 | 0.7484 | 0.4792 |
No log | 3.5 | 56 | 0.5055 | 0.7654 | 0.5064 |
No log | 3.625 | 58 | 0.4947 | 0.7569 | 0.4955 |
No log | 3.75 | 60 | 0.5387 | 0.7681 | 0.5397 |
No log | 3.875 | 62 | 0.6614 | 0.8077 | 0.6627 |
No log | 4.0 | 64 | 0.6356 | 0.8243 | 0.6369 |
No log | 4.125 | 66 | 0.4951 | 0.7545 | 0.4959 |
No log | 4.25 | 68 | 0.4581 | 0.7123 | 0.4588 |
No log | 4.375 | 70 | 0.4776 | 0.7450 | 0.4784 |
No log | 4.5 | 72 | 0.5531 | 0.7823 | 0.5543 |
No log | 4.625 | 74 | 0.5792 | 0.8103 | 0.5805 |
No log | 4.75 | 76 | 0.5337 | 0.7801 | 0.5349 |
No log | 4.875 | 78 | 0.4762 | 0.7597 | 0.4771 |
No log | 5.0 | 80 | 0.4679 | 0.7390 | 0.4687 |
No log | 5.125 | 82 | 0.4753 | 0.7488 | 0.4762 |
No log | 5.25 | 84 | 0.5131 | 0.7689 | 0.5143 |
No log | 5.375 | 86 | 0.5442 | 0.7925 | 0.5455 |
No log | 5.5 | 88 | 0.5074 | 0.7624 | 0.5086 |
No log | 5.625 | 90 | 0.4586 | 0.7435 | 0.4596 |
No log | 5.75 | 92 | 0.4498 | 0.7269 | 0.4507 |
No log | 5.875 | 94 | 0.4604 | 0.7354 | 0.4614 |
No log | 6.0 | 96 | 0.5055 | 0.7753 | 0.5068 |
No log | 6.125 | 98 | 0.5761 | 0.7991 | 0.5776 |
No log | 6.25 | 100 | 0.5566 | 0.7942 | 0.5580 |
No log | 6.375 | 102 | 0.5097 | 0.7509 | 0.5109 |
No log | 6.5 | 104 | 0.4777 | 0.7454 | 0.4787 |
No log | 6.625 | 106 | 0.4691 | 0.7225 | 0.4700 |
No log | 6.75 | 108 | 0.4712 | 0.7283 | 0.4720 |
No log | 6.875 | 110 | 0.4817 | 0.7509 | 0.4827 |
No log | 7.0 | 112 | 0.4772 | 0.7454 | 0.4781 |
No log | 7.125 | 114 | 0.4790 | 0.7490 | 0.4799 |
No log | 7.25 | 116 | 0.5003 | 0.7688 | 0.5014 |
No log | 7.375 | 118 | 0.5353 | 0.7753 | 0.5366 |
No log | 7.5 | 120 | 0.5284 | 0.7670 | 0.5297 |
No log | 7.625 | 122 | 0.5075 | 0.7556 | 0.5086 |
No log | 7.75 | 124 | 0.4824 | 0.7527 | 0.4834 |
No log | 7.875 | 126 | 0.4782 | 0.7527 | 0.4792 |
No log | 8.0 | 128 | 0.4745 | 0.7554 | 0.4755 |
No log | 8.125 | 130 | 0.4803 | 0.7523 | 0.4813 |
No log | 8.25 | 132 | 0.4946 | 0.7614 | 0.4957 |
No log | 8.375 | 134 | 0.4938 | 0.7558 | 0.4950 |
No log | 8.5 | 136 | 0.4888 | 0.7558 | 0.4900 |
No log | 8.625 | 138 | 0.4775 | 0.7507 | 0.4786 |
No log | 8.75 | 140 | 0.4714 | 0.7474 | 0.4724 |
No log | 8.875 | 142 | 0.4668 | 0.7410 | 0.4677 |
No log | 9.0 | 144 | 0.4672 | 0.7382 | 0.4681 |
No log | 9.125 | 146 | 0.4689 | 0.7433 | 0.4698 |
No log | 9.25 | 148 | 0.4738 | 0.7571 | 0.4748 |
No log | 9.375 | 150 | 0.4814 | 0.7511 | 0.4825 |
No log | 9.5 | 152 | 0.4866 | 0.7567 | 0.4877 |
No log | 9.625 | 154 | 0.4900 | 0.7585 | 0.4911 |
No log | 9.75 | 156 | 0.4909 | 0.7585 | 0.4921 |
No log | 9.875 | 158 | 0.4930 | 0.7585 | 0.4942 |
No log | 10.0 | 160 | 0.4946 | 0.7585 | 0.4958 |
Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1