salbatarni's picture
End of training
ef35e6e verified
|
raw
history blame
3.34 kB
metadata
base_model: aubmindlab/bert-base-arabertv02
tags:
  - generated_from_trainer
model-index:
  - name: arabert_cross_relevance_task1_fold0
    results: []

arabert_cross_relevance_task1_fold0

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1907
  • Qwk: 0.0246
  • Mse: 0.1907

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Qwk Mse
No log 0.0351 2 1.1829 -0.0050 1.1829
No log 0.0702 4 0.2409 0.0099 0.2409
No log 0.1053 6 0.1676 -0.0484 0.1676
No log 0.1404 8 0.1570 0.0130 0.1570
No log 0.1754 10 0.3161 0.0173 0.3161
No log 0.2105 12 0.6111 0.0144 0.6111
No log 0.2456 14 0.4643 0.0505 0.4643
No log 0.2807 16 0.3698 0.0345 0.3698
No log 0.3158 18 0.2920 0.0181 0.2920
No log 0.3509 20 0.2091 0.0235 0.2091
No log 0.3860 22 0.1792 0.0092 0.1792
No log 0.4211 24 0.1670 0.0386 0.1670
No log 0.4561 26 0.1654 0.0258 0.1654
No log 0.4912 28 0.1730 0.0081 0.1730
No log 0.5263 30 0.1851 0.0141 0.1851
No log 0.5614 32 0.2064 0.0092 0.2064
No log 0.5965 34 0.2253 0.0270 0.2253
No log 0.6316 36 0.2300 0.0355 0.2300
No log 0.6667 38 0.2391 0.0339 0.2391
No log 0.7018 40 0.2358 0.0339 0.2358
No log 0.7368 42 0.2370 0.0300 0.2370
No log 0.7719 44 0.2370 0.0361 0.2370
No log 0.8070 46 0.2312 0.0323 0.2312
No log 0.8421 48 0.2215 0.0323 0.2215
No log 0.8772 50 0.2101 0.0358 0.2101
No log 0.9123 52 0.2006 0.0212 0.2006
No log 0.9474 54 0.1943 0.0246 0.1943
No log 0.9825 56 0.1907 0.0246 0.1907

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1