metadata
base_model: aubmindlab/bert-base-arabertv02
tags:
- generated_from_trainer
model-index:
- name: arabert_cross_relevance_task1_fold0
results: []
arabert_cross_relevance_task1_fold0
This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2694
- Qwk: 0.0109
- Mse: 0.2694
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
---|---|---|---|---|---|
No log | 0.1333 | 2 | 2.2712 | 0.0 | 2.2712 |
No log | 0.2667 | 4 | 0.8815 | 0.0019 | 0.8815 |
No log | 0.4 | 6 | 0.2576 | 0.0339 | 0.2576 |
No log | 0.5333 | 8 | 0.2104 | 0.0276 | 0.2104 |
No log | 0.6667 | 10 | 0.3374 | 0.0345 | 0.3374 |
No log | 0.8 | 12 | 0.2690 | 0.0323 | 0.2690 |
No log | 0.9333 | 14 | 0.1682 | 0.0249 | 0.1682 |
No log | 1.0667 | 16 | 0.1503 | 0.0339 | 0.1503 |
No log | 1.2 | 18 | 0.1672 | 0.0339 | 0.1672 |
No log | 1.3333 | 20 | 0.2563 | 0.0263 | 0.2563 |
No log | 1.4667 | 22 | 0.3596 | 0.0519 | 0.3596 |
No log | 1.6 | 24 | 0.3144 | 0.0507 | 0.3144 |
No log | 1.7333 | 26 | 0.1940 | 0.0263 | 0.1940 |
No log | 1.8667 | 28 | 0.1460 | 0.0400 | 0.1460 |
No log | 2.0 | 30 | 0.1369 | 0.0364 | 0.1369 |
No log | 2.1333 | 32 | 0.1324 | 0.0372 | 0.1324 |
No log | 2.2667 | 34 | 0.1415 | 0.0339 | 0.1415 |
No log | 2.4 | 36 | 0.1809 | 0.0339 | 0.1809 |
No log | 2.5333 | 38 | 0.2294 | 0.0339 | 0.2294 |
No log | 2.6667 | 40 | 0.2654 | 0.0281 | 0.2654 |
No log | 2.8 | 42 | 0.2940 | 0.0245 | 0.2940 |
No log | 2.9333 | 44 | 0.2676 | 0.0245 | 0.2676 |
No log | 3.0667 | 46 | 0.2359 | 0.0245 | 0.2359 |
No log | 3.2 | 48 | 0.2040 | 0.0263 | 0.2040 |
No log | 3.3333 | 50 | 0.1696 | 0.0300 | 0.1696 |
No log | 3.4667 | 52 | 0.1616 | 0.0339 | 0.1616 |
No log | 3.6 | 54 | 0.1702 | 0.0319 | 0.1702 |
No log | 3.7333 | 56 | 0.2010 | 0.0281 | 0.2010 |
No log | 3.8667 | 58 | 0.2570 | 0.0228 | 0.2570 |
No log | 4.0 | 60 | 0.3107 | 0.0327 | 0.3107 |
No log | 4.1333 | 62 | 0.3132 | 0.0327 | 0.3132 |
No log | 4.2667 | 64 | 0.2646 | 0.0288 | 0.2646 |
No log | 4.4 | 66 | 0.2086 | 0.0263 | 0.2086 |
No log | 4.5333 | 68 | 0.1708 | 0.0300 | 0.1708 |
No log | 4.6667 | 70 | 0.1646 | 0.0179 | 0.1646 |
No log | 4.8 | 72 | 0.1786 | 0.0144 | 0.1786 |
No log | 4.9333 | 74 | 0.2198 | 0.0281 | 0.2198 |
No log | 5.0667 | 76 | 0.2585 | 0.0245 | 0.2585 |
No log | 5.2 | 78 | 0.2513 | 0.0263 | 0.2513 |
No log | 5.3333 | 80 | 0.2441 | 0.0263 | 0.2441 |
No log | 5.4667 | 82 | 0.2186 | 0.0197 | 0.2186 |
No log | 5.6 | 84 | 0.2061 | 0.0197 | 0.2061 |
No log | 5.7333 | 86 | 0.2178 | 0.0197 | 0.2178 |
No log | 5.8667 | 88 | 0.2322 | 0.0197 | 0.2322 |
No log | 6.0 | 90 | 0.2425 | 0.0245 | 0.2425 |
No log | 6.1333 | 92 | 0.2585 | 0.0245 | 0.2585 |
No log | 6.2667 | 94 | 0.2369 | 0.0195 | 0.2369 |
No log | 6.4 | 96 | 0.2110 | 0.0158 | 0.2110 |
No log | 6.5333 | 98 | 0.2006 | 0.0158 | 0.2006 |
No log | 6.6667 | 100 | 0.2175 | 0.0158 | 0.2175 |
No log | 6.8 | 102 | 0.2464 | 0.0210 | 0.2464 |
No log | 6.9333 | 104 | 0.2615 | 0.0225 | 0.2615 |
No log | 7.0667 | 106 | 0.2784 | 0.0288 | 0.2784 |
No log | 7.2 | 108 | 0.2991 | 0.0327 | 0.2991 |
No log | 7.3333 | 110 | 0.2942 | 0.0327 | 0.2942 |
No log | 7.4667 | 112 | 0.3083 | 0.0399 | 0.3083 |
No log | 7.6 | 114 | 0.2910 | 0.0221 | 0.2910 |
No log | 7.7333 | 116 | 0.2561 | 0.0093 | 0.2561 |
No log | 7.8667 | 118 | 0.2246 | 0.0125 | 0.2246 |
No log | 8.0 | 120 | 0.2152 | 0.0156 | 0.2152 |
No log | 8.1333 | 122 | 0.2131 | 0.0156 | 0.2131 |
No log | 8.2667 | 124 | 0.2238 | 0.0140 | 0.2238 |
No log | 8.4 | 126 | 0.2341 | 0.0123 | 0.2341 |
No log | 8.5333 | 128 | 0.2459 | 0.0123 | 0.2459 |
No log | 8.6667 | 130 | 0.2510 | 0.0123 | 0.2510 |
No log | 8.8 | 132 | 0.2702 | 0.0109 | 0.2702 |
No log | 8.9333 | 134 | 0.2776 | 0.0093 | 0.2776 |
No log | 9.0667 | 136 | 0.2862 | 0.0173 | 0.2862 |
No log | 9.2 | 138 | 0.2916 | 0.0158 | 0.2916 |
No log | 9.3333 | 140 | 0.2853 | 0.0158 | 0.2853 |
No log | 9.4667 | 142 | 0.2781 | 0.0173 | 0.2781 |
No log | 9.6 | 144 | 0.2737 | 0.0093 | 0.2737 |
No log | 9.7333 | 146 | 0.2709 | 0.0109 | 0.2709 |
No log | 9.8667 | 148 | 0.2693 | 0.0109 | 0.2693 |
No log | 10.0 | 150 | 0.2694 | 0.0109 | 0.2694 |
Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1