Edit model card

arabert_cross_relevance_task1_fold6

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3732
  • Qwk: 0.2161
  • Mse: 0.3733

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Qwk Mse
No log 0.1333 2 0.9235 0.0305 0.9241
No log 0.2667 4 0.4213 0.0752 0.4205
No log 0.4 6 0.4900 0.2872 0.4904
No log 0.5333 8 0.3989 0.1492 0.3997
No log 0.6667 10 0.2875 0.0828 0.2881
No log 0.8 12 0.3103 0.1946 0.3107
No log 0.9333 14 0.3505 0.1869 0.3507
No log 1.0667 16 0.2987 0.2328 0.2991
No log 1.2 18 0.2743 0.1987 0.2749
No log 1.3333 20 0.2678 0.1801 0.2685
No log 1.4667 22 0.2718 0.2380 0.2723
No log 1.6 24 0.2750 0.2484 0.2754
No log 1.7333 26 0.2802 0.2407 0.2807
No log 1.8667 28 0.2967 0.2647 0.2971
No log 2.0 30 0.3002 0.2386 0.3005
No log 2.1333 32 0.3042 0.2307 0.3046
No log 2.2667 34 0.2836 0.2266 0.2840
No log 2.4 36 0.2566 0.2275 0.2571
No log 2.5333 38 0.2566 0.2726 0.2572
No log 2.6667 40 0.2685 0.2318 0.2689
No log 2.8 42 0.3239 0.2291 0.3238
No log 2.9333 44 0.3137 0.2140 0.3139
No log 3.0667 46 0.2868 0.2462 0.2874
No log 3.2 48 0.2840 0.2475 0.2845
No log 3.3333 50 0.2972 0.2539 0.2975
No log 3.4667 52 0.2987 0.2373 0.2989
No log 3.6 54 0.2922 0.2472 0.2925
No log 3.7333 56 0.2979 0.2276 0.2983
No log 3.8667 58 0.3082 0.2134 0.3086
No log 4.0 60 0.3245 0.2197 0.3249
No log 4.1333 62 0.3302 0.2197 0.3305
No log 4.2667 64 0.3164 0.2079 0.3169
No log 4.4 66 0.3410 0.2131 0.3413
No log 4.5333 68 0.3844 0.2178 0.3845
No log 4.6667 70 0.3887 0.2178 0.3888
No log 4.8 72 0.3995 0.2096 0.3996
No log 4.9333 74 0.3677 0.2141 0.3679
No log 5.0667 76 0.3517 0.2188 0.3520
No log 5.2 78 0.3437 0.2188 0.3439
No log 5.3333 80 0.3781 0.2096 0.3782
No log 5.4667 82 0.4079 0.1975 0.4080
No log 5.6 84 0.4051 0.2133 0.4052
No log 5.7333 86 0.3469 0.2313 0.3471
No log 5.8667 88 0.3091 0.2317 0.3095
No log 6.0 90 0.3034 0.2341 0.3039
No log 6.1333 92 0.3187 0.2175 0.3191
No log 6.2667 94 0.3556 0.2123 0.3558
No log 6.4 96 0.4256 0.1936 0.4256
No log 6.5333 98 0.4370 0.1899 0.4370
No log 6.6667 100 0.4141 0.2053 0.4142
No log 6.8 102 0.4062 0.2053 0.4063
No log 6.9333 104 0.3722 0.2178 0.3723
No log 7.0667 106 0.3420 0.2313 0.3423
No log 7.2 108 0.3323 0.2337 0.3326
No log 7.3333 110 0.3482 0.2161 0.3484
No log 7.4667 112 0.3690 0.2178 0.3691
No log 7.6 114 0.3867 0.2169 0.3868
No log 7.7333 116 0.4039 0.2029 0.4039
No log 7.8667 118 0.4092 0.2029 0.4091
No log 8.0 120 0.4179 0.2012 0.4178
No log 8.1333 122 0.4160 0.2089 0.4160
No log 8.2667 124 0.4199 0.2012 0.4199
No log 8.4 126 0.4338 0.1899 0.4337
No log 8.5333 128 0.4437 0.1935 0.4436
No log 8.6667 130 0.4404 0.1973 0.4403
No log 8.8 132 0.4283 0.2012 0.4282
No log 8.9333 134 0.4152 0.2012 0.4151
No log 9.0667 136 0.3937 0.2089 0.3937
No log 9.2 138 0.3753 0.2141 0.3753
No log 9.3333 140 0.3664 0.2097 0.3665
No log 9.4667 142 0.3644 0.2097 0.3645
No log 9.6 144 0.3651 0.2097 0.3652
No log 9.7333 146 0.3680 0.2097 0.3681
No log 9.8667 148 0.3713 0.2097 0.3714
No log 10.0 150 0.3732 0.2161 0.3733

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
0
Safetensors
Model size
135M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for salbatarni/arabert_cross_relevance_task1_fold6

Finetuned
(674)
this model