arabert_cross_relevance_task2_fold2
This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6695
- Qwk: 0.0252
- Mse: 0.6695
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
---|---|---|---|---|---|
No log | 0.1176 | 2 | 0.3996 | 0.0319 | 0.3996 |
No log | 0.2353 | 4 | 0.4069 | 0.0909 | 0.4069 |
No log | 0.3529 | 6 | 0.3579 | -0.0167 | 0.3579 |
No log | 0.4706 | 8 | 0.3710 | 0.0 | 0.3710 |
No log | 0.5882 | 10 | 0.3188 | -0.0235 | 0.3188 |
No log | 0.7059 | 12 | 0.3518 | -0.1194 | 0.3518 |
No log | 0.8235 | 14 | 0.3275 | -0.0616 | 0.3275 |
No log | 0.9412 | 16 | 0.3104 | 0.0 | 0.3104 |
No log | 1.0588 | 18 | 0.3535 | 0.0 | 0.3535 |
No log | 1.1765 | 20 | 0.3752 | 0.0 | 0.3752 |
No log | 1.2941 | 22 | 0.3373 | 0.0 | 0.3373 |
No log | 1.4118 | 24 | 0.3102 | 0.0 | 0.3102 |
No log | 1.5294 | 26 | 0.2963 | 0.0 | 0.2963 |
No log | 1.6471 | 28 | 0.2934 | 0.0 | 0.2934 |
No log | 1.7647 | 30 | 0.2889 | 0.0 | 0.2889 |
No log | 1.8824 | 32 | 0.2810 | 0.0 | 0.2810 |
No log | 2.0 | 34 | 0.2866 | -0.0235 | 0.2866 |
No log | 2.1176 | 36 | 0.3061 | 0.0068 | 0.3061 |
No log | 2.2353 | 38 | 0.3392 | -0.0433 | 0.3392 |
No log | 2.3529 | 40 | 0.3020 | -0.0034 | 0.3020 |
No log | 2.4706 | 42 | 0.2698 | -0.0235 | 0.2698 |
No log | 2.5882 | 44 | 0.2696 | -0.0235 | 0.2696 |
No log | 2.7059 | 46 | 0.2745 | -0.0235 | 0.2745 |
No log | 2.8235 | 48 | 0.2757 | -0.0235 | 0.2757 |
No log | 2.9412 | 50 | 0.3094 | 0.0 | 0.3094 |
No log | 3.0588 | 52 | 0.3116 | 0.0 | 0.3116 |
No log | 3.1765 | 54 | 0.2780 | 0.0 | 0.2780 |
No log | 3.2941 | 56 | 0.2758 | -0.0235 | 0.2758 |
No log | 3.4118 | 58 | 0.2767 | -0.0235 | 0.2767 |
No log | 3.5294 | 60 | 0.2717 | -0.0235 | 0.2717 |
No log | 3.6471 | 62 | 0.2957 | 0.0 | 0.2957 |
No log | 3.7647 | 64 | 0.3009 | 0.0 | 0.3009 |
No log | 3.8824 | 66 | 0.2803 | 0.0 | 0.2803 |
No log | 4.0 | 68 | 0.2754 | -0.0235 | 0.2754 |
No log | 4.1176 | 70 | 0.2758 | -0.0235 | 0.2758 |
No log | 4.2353 | 72 | 0.2948 | -0.0235 | 0.2948 |
No log | 4.3529 | 74 | 0.3207 | 0.0 | 0.3207 |
No log | 4.4706 | 76 | 0.3204 | 0.0 | 0.3204 |
No log | 4.5882 | 78 | 0.2864 | -0.0235 | 0.2864 |
No log | 4.7059 | 80 | 0.2756 | -0.0235 | 0.2756 |
No log | 4.8235 | 82 | 0.2778 | -0.0235 | 0.2778 |
No log | 4.9412 | 84 | 0.2766 | -0.0235 | 0.2766 |
No log | 5.0588 | 86 | 0.2988 | -0.0235 | 0.2988 |
No log | 5.1765 | 88 | 0.3889 | 0.0224 | 0.3889 |
No log | 5.2941 | 90 | 0.4631 | 0.0123 | 0.4631 |
No log | 5.4118 | 92 | 0.4091 | 0.0224 | 0.4091 |
No log | 5.5294 | 94 | 0.3390 | -0.0235 | 0.3390 |
No log | 5.6471 | 96 | 0.3069 | -0.0235 | 0.3069 |
No log | 5.7647 | 98 | 0.3133 | -0.0235 | 0.3133 |
No log | 5.8824 | 100 | 0.3527 | -0.0235 | 0.3527 |
No log | 6.0 | 102 | 0.3823 | -0.0235 | 0.3823 |
No log | 6.1176 | 104 | 0.3926 | -0.0096 | 0.3926 |
No log | 6.2353 | 106 | 0.3681 | -0.0235 | 0.3681 |
No log | 6.3529 | 108 | 0.3415 | -0.0235 | 0.3415 |
No log | 6.4706 | 110 | 0.3362 | -0.0235 | 0.3362 |
No log | 6.5882 | 112 | 0.3928 | -0.0323 | 0.3928 |
No log | 6.7059 | 114 | 0.4304 | -0.0093 | 0.4304 |
No log | 6.8235 | 116 | 0.4880 | 0.0152 | 0.4880 |
No log | 6.9412 | 118 | 0.5316 | -0.0043 | 0.5316 |
No log | 7.0588 | 120 | 0.5155 | 0.0090 | 0.5155 |
No log | 7.1765 | 122 | 0.4655 | 0.0135 | 0.4655 |
No log | 7.2941 | 124 | 0.4459 | 0.0029 | 0.4459 |
No log | 7.4118 | 126 | 0.4302 | -0.0180 | 0.4302 |
No log | 7.5294 | 128 | 0.4389 | -0.0260 | 0.4389 |
No log | 7.6471 | 130 | 0.4613 | -0.0025 | 0.4613 |
No log | 7.7647 | 132 | 0.4740 | 0.0311 | 0.4740 |
No log | 7.8824 | 134 | 0.4735 | 0.0311 | 0.4735 |
No log | 8.0 | 136 | 0.4930 | 0.0088 | 0.4930 |
No log | 8.1176 | 138 | 0.5329 | 0.0102 | 0.5329 |
No log | 8.2353 | 140 | 0.5907 | -0.0105 | 0.5907 |
No log | 8.3529 | 142 | 0.6354 | -0.0082 | 0.6354 |
No log | 8.4706 | 144 | 0.6447 | -0.0082 | 0.6447 |
No log | 8.5882 | 146 | 0.6437 | 0.0032 | 0.6437 |
No log | 8.7059 | 148 | 0.6301 | -0.0201 | 0.6301 |
No log | 8.8235 | 150 | 0.6096 | -0.0201 | 0.6096 |
No log | 8.9412 | 152 | 0.6030 | -0.0201 | 0.6030 |
No log | 9.0588 | 154 | 0.6322 | -0.0082 | 0.6322 |
No log | 9.1765 | 156 | 0.6675 | 0.0142 | 0.6675 |
No log | 9.2941 | 158 | 0.7002 | 0.0252 | 0.7002 |
No log | 9.4118 | 160 | 0.7136 | 0.0455 | 0.7136 |
No log | 9.5294 | 162 | 0.7118 | 0.0455 | 0.7118 |
No log | 9.6471 | 164 | 0.7001 | 0.0355 | 0.7001 |
No log | 9.7647 | 166 | 0.6860 | 0.0252 | 0.6860 |
No log | 9.8824 | 168 | 0.6738 | 0.0252 | 0.6738 |
No log | 10.0 | 170 | 0.6695 | 0.0252 | 0.6695 |
Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 2
Model tree for salbatarni/arabert_cross_relevance_task2_fold2
Base model
aubmindlab/bert-base-arabertv02