Edit model card

arabert_cross_relevance_task2_fold2

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6695
  • Qwk: 0.0252
  • Mse: 0.6695

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Qwk Mse
No log 0.1176 2 0.3996 0.0319 0.3996
No log 0.2353 4 0.4069 0.0909 0.4069
No log 0.3529 6 0.3579 -0.0167 0.3579
No log 0.4706 8 0.3710 0.0 0.3710
No log 0.5882 10 0.3188 -0.0235 0.3188
No log 0.7059 12 0.3518 -0.1194 0.3518
No log 0.8235 14 0.3275 -0.0616 0.3275
No log 0.9412 16 0.3104 0.0 0.3104
No log 1.0588 18 0.3535 0.0 0.3535
No log 1.1765 20 0.3752 0.0 0.3752
No log 1.2941 22 0.3373 0.0 0.3373
No log 1.4118 24 0.3102 0.0 0.3102
No log 1.5294 26 0.2963 0.0 0.2963
No log 1.6471 28 0.2934 0.0 0.2934
No log 1.7647 30 0.2889 0.0 0.2889
No log 1.8824 32 0.2810 0.0 0.2810
No log 2.0 34 0.2866 -0.0235 0.2866
No log 2.1176 36 0.3061 0.0068 0.3061
No log 2.2353 38 0.3392 -0.0433 0.3392
No log 2.3529 40 0.3020 -0.0034 0.3020
No log 2.4706 42 0.2698 -0.0235 0.2698
No log 2.5882 44 0.2696 -0.0235 0.2696
No log 2.7059 46 0.2745 -0.0235 0.2745
No log 2.8235 48 0.2757 -0.0235 0.2757
No log 2.9412 50 0.3094 0.0 0.3094
No log 3.0588 52 0.3116 0.0 0.3116
No log 3.1765 54 0.2780 0.0 0.2780
No log 3.2941 56 0.2758 -0.0235 0.2758
No log 3.4118 58 0.2767 -0.0235 0.2767
No log 3.5294 60 0.2717 -0.0235 0.2717
No log 3.6471 62 0.2957 0.0 0.2957
No log 3.7647 64 0.3009 0.0 0.3009
No log 3.8824 66 0.2803 0.0 0.2803
No log 4.0 68 0.2754 -0.0235 0.2754
No log 4.1176 70 0.2758 -0.0235 0.2758
No log 4.2353 72 0.2948 -0.0235 0.2948
No log 4.3529 74 0.3207 0.0 0.3207
No log 4.4706 76 0.3204 0.0 0.3204
No log 4.5882 78 0.2864 -0.0235 0.2864
No log 4.7059 80 0.2756 -0.0235 0.2756
No log 4.8235 82 0.2778 -0.0235 0.2778
No log 4.9412 84 0.2766 -0.0235 0.2766
No log 5.0588 86 0.2988 -0.0235 0.2988
No log 5.1765 88 0.3889 0.0224 0.3889
No log 5.2941 90 0.4631 0.0123 0.4631
No log 5.4118 92 0.4091 0.0224 0.4091
No log 5.5294 94 0.3390 -0.0235 0.3390
No log 5.6471 96 0.3069 -0.0235 0.3069
No log 5.7647 98 0.3133 -0.0235 0.3133
No log 5.8824 100 0.3527 -0.0235 0.3527
No log 6.0 102 0.3823 -0.0235 0.3823
No log 6.1176 104 0.3926 -0.0096 0.3926
No log 6.2353 106 0.3681 -0.0235 0.3681
No log 6.3529 108 0.3415 -0.0235 0.3415
No log 6.4706 110 0.3362 -0.0235 0.3362
No log 6.5882 112 0.3928 -0.0323 0.3928
No log 6.7059 114 0.4304 -0.0093 0.4304
No log 6.8235 116 0.4880 0.0152 0.4880
No log 6.9412 118 0.5316 -0.0043 0.5316
No log 7.0588 120 0.5155 0.0090 0.5155
No log 7.1765 122 0.4655 0.0135 0.4655
No log 7.2941 124 0.4459 0.0029 0.4459
No log 7.4118 126 0.4302 -0.0180 0.4302
No log 7.5294 128 0.4389 -0.0260 0.4389
No log 7.6471 130 0.4613 -0.0025 0.4613
No log 7.7647 132 0.4740 0.0311 0.4740
No log 7.8824 134 0.4735 0.0311 0.4735
No log 8.0 136 0.4930 0.0088 0.4930
No log 8.1176 138 0.5329 0.0102 0.5329
No log 8.2353 140 0.5907 -0.0105 0.5907
No log 8.3529 142 0.6354 -0.0082 0.6354
No log 8.4706 144 0.6447 -0.0082 0.6447
No log 8.5882 146 0.6437 0.0032 0.6437
No log 8.7059 148 0.6301 -0.0201 0.6301
No log 8.8235 150 0.6096 -0.0201 0.6096
No log 8.9412 152 0.6030 -0.0201 0.6030
No log 9.0588 154 0.6322 -0.0082 0.6322
No log 9.1765 156 0.6675 0.0142 0.6675
No log 9.2941 158 0.7002 0.0252 0.7002
No log 9.4118 160 0.7136 0.0455 0.7136
No log 9.5294 162 0.7118 0.0455 0.7118
No log 9.6471 164 0.7001 0.0355 0.7001
No log 9.7647 166 0.6860 0.0252 0.6860
No log 9.8824 168 0.6738 0.0252 0.6738
No log 10.0 170 0.6695 0.0252 0.6695

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
2
Safetensors
Model size
135M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for salbatarni/arabert_cross_relevance_task2_fold2

Finetuned
(678)
this model