salbatarni's picture
Training in progress, step 150
32ea71f verified
|
raw
history blame
6.87 kB
metadata
base_model: aubmindlab/bert-base-arabertv02
tags:
  - generated_from_trainer
model-index:
  - name: arabert_cross_relevance_task2_fold4
    results: []

arabert_cross_relevance_task2_fold4

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4006
  • Qwk: 0.2250
  • Mse: 0.4006

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Qwk Mse
No log 0.125 2 1.1063 0.0234 1.1063
No log 0.25 4 0.4473 0.1039 0.4473
No log 0.375 6 0.4088 0.2073 0.4088
No log 0.5 8 0.4319 0.2351 0.4319
No log 0.625 10 0.2875 0.2401 0.2875
No log 0.75 12 0.2836 0.2194 0.2836
No log 0.875 14 0.3021 0.2575 0.3021
No log 1.0 16 0.2942 0.2831 0.2942
No log 1.125 18 0.3155 0.2508 0.3155
No log 1.25 20 0.2964 0.2787 0.2964
No log 1.375 22 0.2774 0.2820 0.2774
No log 1.5 24 0.2398 0.3029 0.2398
No log 1.625 26 0.2524 0.2501 0.2524
No log 1.75 28 0.2680 0.2390 0.2680
No log 1.875 30 0.2581 0.2579 0.2581
No log 2.0 32 0.2540 0.2787 0.2540
No log 2.125 34 0.2836 0.3308 0.2836
No log 2.25 36 0.3870 0.2114 0.3870
No log 2.375 38 0.4205 0.2269 0.4205
No log 2.5 40 0.3210 0.2236 0.3210
No log 2.625 42 0.2478 0.4116 0.2478
No log 2.75 44 0.2382 0.3767 0.2382
No log 2.875 46 0.2494 0.2579 0.2494
No log 3.0 48 0.3000 0.2553 0.3000
No log 3.125 50 0.3533 0.2028 0.3533
No log 3.25 52 0.3681 0.2209 0.3681
No log 3.375 54 0.3235 0.2270 0.3235
No log 3.5 56 0.2844 0.2648 0.2844
No log 3.625 58 0.2941 0.2428 0.2941
No log 3.75 60 0.3737 0.2222 0.3737
No log 3.875 62 0.4306 0.2146 0.4306
No log 4.0 64 0.4279 0.2146 0.4279
No log 4.125 66 0.3959 0.2155 0.3959
No log 4.25 68 0.3136 0.2441 0.3136
No log 4.375 70 0.2972 0.2593 0.2972
No log 4.5 72 0.2889 0.2677 0.2889
No log 4.625 74 0.3100 0.2489 0.3100
No log 4.75 76 0.3614 0.2425 0.3614
No log 4.875 78 0.3949 0.2337 0.3949
No log 5.0 80 0.4746 0.1752 0.4746
No log 5.125 82 0.4462 0.1969 0.4462
No log 5.25 84 0.3424 0.2572 0.3424
No log 5.375 86 0.3171 0.2798 0.3171
No log 5.5 88 0.3687 0.2452 0.3687
No log 5.625 90 0.4496 0.1969 0.4496
No log 5.75 92 0.4134 0.2126 0.4134
No log 5.875 94 0.3763 0.2172 0.3763
No log 6.0 96 0.3924 0.2106 0.3924
No log 6.125 98 0.3918 0.2106 0.3918
No log 6.25 100 0.4398 0.2029 0.4398
No log 6.375 102 0.5008 0.1879 0.5008
No log 6.5 104 0.4898 0.1781 0.4898
No log 6.625 106 0.4198 0.2218 0.4198
No log 6.75 108 0.3476 0.2243 0.3476
No log 6.875 110 0.3538 0.2243 0.3538
No log 7.0 112 0.4262 0.2163 0.4262
No log 7.125 114 0.4667 0.1909 0.4667
No log 7.25 116 0.4562 0.1881 0.4562
No log 7.375 118 0.4023 0.2163 0.4023
No log 7.5 120 0.3664 0.2169 0.3664
No log 7.625 122 0.3487 0.2346 0.3487
No log 7.75 124 0.3715 0.2262 0.3715
No log 7.875 126 0.4267 0.2035 0.4267
No log 8.0 128 0.5126 0.1714 0.5126
No log 8.125 130 0.5465 0.1609 0.5465
No log 8.25 132 0.5097 0.1661 0.5097
No log 8.375 134 0.4320 0.2006 0.4320
No log 8.5 136 0.3786 0.2290 0.3786
No log 8.625 138 0.3721 0.2216 0.3721
No log 8.75 140 0.3867 0.2177 0.3867
No log 8.875 142 0.4094 0.2086 0.4094
No log 9.0 144 0.4304 0.2070 0.4304
No log 9.125 146 0.4412 0.2070 0.4412
No log 9.25 148 0.4352 0.2160 0.4352
No log 9.375 150 0.4157 0.2250 0.4157
No log 9.5 152 0.4008 0.2250 0.4008
No log 9.625 154 0.3937 0.2223 0.3937
No log 9.75 156 0.3953 0.2223 0.3953
No log 9.875 158 0.3987 0.2250 0.3987
No log 10.0 160 0.4006 0.2250 0.4006

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1