metadata
base_model: aubmindlab/bert-base-arabertv02
tags:
- generated_from_trainer
model-index:
- name: arabert_cross_relevance_task2_fold4
results: []
arabert_cross_relevance_task2_fold4
This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4006
- Qwk: 0.2250
- Mse: 0.4006
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
---|---|---|---|---|---|
No log | 0.125 | 2 | 1.1063 | 0.0234 | 1.1063 |
No log | 0.25 | 4 | 0.4473 | 0.1039 | 0.4473 |
No log | 0.375 | 6 | 0.4088 | 0.2073 | 0.4088 |
No log | 0.5 | 8 | 0.4319 | 0.2351 | 0.4319 |
No log | 0.625 | 10 | 0.2875 | 0.2401 | 0.2875 |
No log | 0.75 | 12 | 0.2836 | 0.2194 | 0.2836 |
No log | 0.875 | 14 | 0.3021 | 0.2575 | 0.3021 |
No log | 1.0 | 16 | 0.2942 | 0.2831 | 0.2942 |
No log | 1.125 | 18 | 0.3155 | 0.2508 | 0.3155 |
No log | 1.25 | 20 | 0.2964 | 0.2787 | 0.2964 |
No log | 1.375 | 22 | 0.2774 | 0.2820 | 0.2774 |
No log | 1.5 | 24 | 0.2398 | 0.3029 | 0.2398 |
No log | 1.625 | 26 | 0.2524 | 0.2501 | 0.2524 |
No log | 1.75 | 28 | 0.2680 | 0.2390 | 0.2680 |
No log | 1.875 | 30 | 0.2581 | 0.2579 | 0.2581 |
No log | 2.0 | 32 | 0.2540 | 0.2787 | 0.2540 |
No log | 2.125 | 34 | 0.2836 | 0.3308 | 0.2836 |
No log | 2.25 | 36 | 0.3870 | 0.2114 | 0.3870 |
No log | 2.375 | 38 | 0.4205 | 0.2269 | 0.4205 |
No log | 2.5 | 40 | 0.3210 | 0.2236 | 0.3210 |
No log | 2.625 | 42 | 0.2478 | 0.4116 | 0.2478 |
No log | 2.75 | 44 | 0.2382 | 0.3767 | 0.2382 |
No log | 2.875 | 46 | 0.2494 | 0.2579 | 0.2494 |
No log | 3.0 | 48 | 0.3000 | 0.2553 | 0.3000 |
No log | 3.125 | 50 | 0.3533 | 0.2028 | 0.3533 |
No log | 3.25 | 52 | 0.3681 | 0.2209 | 0.3681 |
No log | 3.375 | 54 | 0.3235 | 0.2270 | 0.3235 |
No log | 3.5 | 56 | 0.2844 | 0.2648 | 0.2844 |
No log | 3.625 | 58 | 0.2941 | 0.2428 | 0.2941 |
No log | 3.75 | 60 | 0.3737 | 0.2222 | 0.3737 |
No log | 3.875 | 62 | 0.4306 | 0.2146 | 0.4306 |
No log | 4.0 | 64 | 0.4279 | 0.2146 | 0.4279 |
No log | 4.125 | 66 | 0.3959 | 0.2155 | 0.3959 |
No log | 4.25 | 68 | 0.3136 | 0.2441 | 0.3136 |
No log | 4.375 | 70 | 0.2972 | 0.2593 | 0.2972 |
No log | 4.5 | 72 | 0.2889 | 0.2677 | 0.2889 |
No log | 4.625 | 74 | 0.3100 | 0.2489 | 0.3100 |
No log | 4.75 | 76 | 0.3614 | 0.2425 | 0.3614 |
No log | 4.875 | 78 | 0.3949 | 0.2337 | 0.3949 |
No log | 5.0 | 80 | 0.4746 | 0.1752 | 0.4746 |
No log | 5.125 | 82 | 0.4462 | 0.1969 | 0.4462 |
No log | 5.25 | 84 | 0.3424 | 0.2572 | 0.3424 |
No log | 5.375 | 86 | 0.3171 | 0.2798 | 0.3171 |
No log | 5.5 | 88 | 0.3687 | 0.2452 | 0.3687 |
No log | 5.625 | 90 | 0.4496 | 0.1969 | 0.4496 |
No log | 5.75 | 92 | 0.4134 | 0.2126 | 0.4134 |
No log | 5.875 | 94 | 0.3763 | 0.2172 | 0.3763 |
No log | 6.0 | 96 | 0.3924 | 0.2106 | 0.3924 |
No log | 6.125 | 98 | 0.3918 | 0.2106 | 0.3918 |
No log | 6.25 | 100 | 0.4398 | 0.2029 | 0.4398 |
No log | 6.375 | 102 | 0.5008 | 0.1879 | 0.5008 |
No log | 6.5 | 104 | 0.4898 | 0.1781 | 0.4898 |
No log | 6.625 | 106 | 0.4198 | 0.2218 | 0.4198 |
No log | 6.75 | 108 | 0.3476 | 0.2243 | 0.3476 |
No log | 6.875 | 110 | 0.3538 | 0.2243 | 0.3538 |
No log | 7.0 | 112 | 0.4262 | 0.2163 | 0.4262 |
No log | 7.125 | 114 | 0.4667 | 0.1909 | 0.4667 |
No log | 7.25 | 116 | 0.4562 | 0.1881 | 0.4562 |
No log | 7.375 | 118 | 0.4023 | 0.2163 | 0.4023 |
No log | 7.5 | 120 | 0.3664 | 0.2169 | 0.3664 |
No log | 7.625 | 122 | 0.3487 | 0.2346 | 0.3487 |
No log | 7.75 | 124 | 0.3715 | 0.2262 | 0.3715 |
No log | 7.875 | 126 | 0.4267 | 0.2035 | 0.4267 |
No log | 8.0 | 128 | 0.5126 | 0.1714 | 0.5126 |
No log | 8.125 | 130 | 0.5465 | 0.1609 | 0.5465 |
No log | 8.25 | 132 | 0.5097 | 0.1661 | 0.5097 |
No log | 8.375 | 134 | 0.4320 | 0.2006 | 0.4320 |
No log | 8.5 | 136 | 0.3786 | 0.2290 | 0.3786 |
No log | 8.625 | 138 | 0.3721 | 0.2216 | 0.3721 |
No log | 8.75 | 140 | 0.3867 | 0.2177 | 0.3867 |
No log | 8.875 | 142 | 0.4094 | 0.2086 | 0.4094 |
No log | 9.0 | 144 | 0.4304 | 0.2070 | 0.4304 |
No log | 9.125 | 146 | 0.4412 | 0.2070 | 0.4412 |
No log | 9.25 | 148 | 0.4352 | 0.2160 | 0.4352 |
No log | 9.375 | 150 | 0.4157 | 0.2250 | 0.4157 |
No log | 9.5 | 152 | 0.4008 | 0.2250 | 0.4008 |
No log | 9.625 | 154 | 0.3937 | 0.2223 | 0.3937 |
No log | 9.75 | 156 | 0.3953 | 0.2223 | 0.3953 |
No log | 9.875 | 158 | 0.3987 | 0.2250 | 0.3987 |
No log | 10.0 | 160 | 0.4006 | 0.2250 | 0.4006 |
Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1