Edit model card

arabert_cross_relevance_task3_fold2

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3250
  • Qwk: -0.0612
  • Mse: 0.3250

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Qwk Mse
No log 0.1111 2 0.3649 0.0417 0.3649
No log 0.2222 4 0.3523 0.0574 0.3523
No log 0.3333 6 0.3294 -0.0145 0.3294
No log 0.4444 8 0.3150 0.0 0.3150
No log 0.5556 10 0.3425 -0.0766 0.3425
No log 0.6667 12 0.5181 -0.0897 0.5181
No log 0.7778 14 0.5767 -0.0417 0.5767
No log 0.8889 16 0.4852 0.0584 0.4852
No log 1.0 18 0.4593 0.0244 0.4593
No log 1.1111 20 0.4073 -0.0106 0.4073
No log 1.2222 22 0.3911 0.1832 0.3911
No log 1.3333 24 0.5107 0.0132 0.5107
No log 1.4444 26 0.5836 0.0068 0.5836
No log 1.5556 28 0.4981 0.0584 0.4981
No log 1.6667 30 0.4625 -0.0802 0.4625
No log 1.7778 32 0.4676 -0.0714 0.4676
No log 1.8889 34 0.4572 -0.1310 0.4572
No log 2.0 36 0.4709 -0.0802 0.4709
No log 2.1111 38 0.4247 -0.1559 0.4247
No log 2.2222 40 0.4232 -0.1413 0.4232
No log 2.3333 42 0.3999 -0.1667 0.3999
No log 2.4444 44 0.4332 -0.1813 0.4332
No log 2.5556 46 0.3931 -0.1574 0.3931
No log 2.6667 48 0.3256 -0.1331 0.3256
No log 2.7778 50 0.3008 -0.0235 0.3008
No log 2.8889 52 0.3005 -0.0473 0.3005
No log 3.0 54 0.3003 -0.0714 0.3003
No log 3.1111 56 0.3285 -0.0507 0.3285
No log 3.2222 58 0.3502 -0.1508 0.3502
No log 3.3333 60 0.3399 -0.0556 0.3399
No log 3.4444 62 0.3233 -0.0563 0.3233
No log 3.5556 64 0.3562 -0.0833 0.3562
No log 3.6667 66 0.3846 -0.0981 0.3846
No log 3.7778 68 0.3873 -0.2037 0.3873
No log 3.8889 70 0.3435 -0.0870 0.3435
No log 4.0 72 0.3453 -0.0971 0.3453
No log 4.1111 74 0.3477 -0.1594 0.3477
No log 4.2222 76 0.3299 -0.0563 0.3299
No log 4.3333 78 0.3344 -0.0507 0.3344
No log 4.4444 80 0.3511 -0.2097 0.3511
No log 4.5556 82 0.3423 -0.1154 0.3423
No log 4.6667 84 0.3303 -0.0971 0.3303
No log 4.7778 86 0.3029 -0.0473 0.3029
No log 4.8889 88 0.2956 -0.0235 0.2956
No log 5.0 90 0.2958 -0.0235 0.2958
No log 5.1111 92 0.2967 -0.0235 0.2967
No log 5.2222 94 0.3097 -0.0616 0.3097
No log 5.3333 96 0.3615 -0.0366 0.3615
No log 5.4444 98 0.4248 -0.1224 0.4248
No log 5.5556 100 0.4152 -0.1000 0.4152
No log 5.6667 102 0.3541 0.0200 0.3541
No log 5.7778 104 0.3081 -0.0764 0.3081
No log 5.8889 106 0.2999 -0.0473 0.2999
No log 6.0 108 0.3089 -0.0616 0.3089
No log 6.1111 110 0.3305 -0.1620 0.3305
No log 6.2222 112 0.3428 -0.1397 0.3428
No log 6.3333 114 0.3362 -0.1496 0.3362
No log 6.4444 116 0.3379 -0.1194 0.3379
No log 6.5556 118 0.3505 -0.0827 0.3505
No log 6.6667 120 0.3567 -0.0827 0.3567
No log 6.7778 122 0.3610 -0.0772 0.3610
No log 6.8889 124 0.3491 -0.0769 0.3491
No log 7.0 126 0.3359 -0.0448 0.3359
No log 7.1111 128 0.3213 -0.0714 0.3213
No log 7.2222 130 0.3241 -0.0714 0.3241
No log 7.3333 132 0.3400 -0.0985 0.3400
No log 7.4444 134 0.3581 -0.0537 0.3581
No log 7.5556 136 0.3622 -0.0833 0.3622
No log 7.6667 138 0.3448 -0.0659 0.3448
No log 7.7778 140 0.3219 -0.0764 0.3219
No log 7.8889 142 0.3076 -0.0616 0.3076
No log 8.0 144 0.3064 -0.0616 0.3064
No log 8.1111 146 0.3132 -0.0616 0.3132
No log 8.2222 148 0.3268 -0.0612 0.3268
No log 8.3333 150 0.3441 -0.1260 0.3441
No log 8.4444 152 0.3508 -0.1328 0.3508
No log 8.5556 154 0.3460 -0.1154 0.3460
No log 8.6667 156 0.3385 -0.0606 0.3385
No log 8.7778 158 0.3312 -0.0294 0.3312
No log 8.8889 160 0.3268 -0.0294 0.3268
No log 9.0 162 0.3251 -0.0507 0.3251
No log 9.1111 164 0.3282 -0.0294 0.3282
No log 9.2222 166 0.3331 -0.1090 0.3331
No log 9.3333 168 0.3347 -0.1090 0.3347
No log 9.4444 170 0.3357 -0.1090 0.3357
No log 9.5556 172 0.3343 -0.1090 0.3343
No log 9.6667 174 0.3318 -0.0556 0.3318
No log 9.7778 176 0.3286 -0.0662 0.3286
No log 9.8889 178 0.3261 -0.0766 0.3261
No log 10.0 180 0.3250 -0.0612 0.3250

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
0
Safetensors
Model size
135M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for salbatarni/arabert_cross_relevance_task3_fold2

Finetuned
(695)
this model