arabert_cross_relevance_task3_fold3
This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2596
- Qwk: 0.4029
- Mse: 0.2596
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
---|---|---|---|---|---|
No log | 0.125 | 2 | 0.5262 | 0.1787 | 0.5262 |
No log | 0.25 | 4 | 0.4596 | 0.2239 | 0.4596 |
No log | 0.375 | 6 | 0.3362 | 0.2878 | 0.3362 |
No log | 0.5 | 8 | 0.3282 | 0.2999 | 0.3282 |
No log | 0.625 | 10 | 0.3253 | 0.3165 | 0.3253 |
No log | 0.75 | 12 | 0.3138 | 0.2765 | 0.3138 |
No log | 0.875 | 14 | 0.2956 | 0.2948 | 0.2956 |
No log | 1.0 | 16 | 0.2879 | 0.3245 | 0.2879 |
No log | 1.125 | 18 | 0.2688 | 0.3611 | 0.2688 |
No log | 1.25 | 20 | 0.2662 | 0.3671 | 0.2662 |
No log | 1.375 | 22 | 0.2655 | 0.3995 | 0.2655 |
No log | 1.5 | 24 | 0.2543 | 0.3783 | 0.2543 |
No log | 1.625 | 26 | 0.2646 | 0.3143 | 0.2646 |
No log | 1.75 | 28 | 0.2991 | 0.2752 | 0.2991 |
No log | 1.875 | 30 | 0.3254 | 0.2955 | 0.3254 |
No log | 2.0 | 32 | 0.3327 | 0.3366 | 0.3327 |
No log | 2.125 | 34 | 0.2988 | 0.3162 | 0.2988 |
No log | 2.25 | 36 | 0.2557 | 0.3439 | 0.2557 |
No log | 2.375 | 38 | 0.2529 | 0.3569 | 0.2529 |
No log | 2.5 | 40 | 0.2597 | 0.3841 | 0.2597 |
No log | 2.625 | 42 | 0.3219 | 0.4642 | 0.3219 |
No log | 2.75 | 44 | 0.3567 | 0.4279 | 0.3567 |
No log | 2.875 | 46 | 0.3379 | 0.3457 | 0.3379 |
No log | 3.0 | 48 | 0.2854 | 0.3137 | 0.2854 |
No log | 3.125 | 50 | 0.2618 | 0.3617 | 0.2618 |
No log | 3.25 | 52 | 0.2662 | 0.4309 | 0.2662 |
No log | 3.375 | 54 | 0.2959 | 0.4928 | 0.2959 |
No log | 3.5 | 56 | 0.2933 | 0.5115 | 0.2933 |
No log | 3.625 | 58 | 0.2656 | 0.5054 | 0.2656 |
No log | 3.75 | 60 | 0.2489 | 0.4257 | 0.2489 |
No log | 3.875 | 62 | 0.2494 | 0.3892 | 0.2494 |
No log | 4.0 | 64 | 0.2669 | 0.4115 | 0.2669 |
No log | 4.125 | 66 | 0.3092 | 0.4465 | 0.3092 |
No log | 4.25 | 68 | 0.3149 | 0.4704 | 0.3149 |
No log | 4.375 | 70 | 0.2852 | 0.4302 | 0.2852 |
No log | 4.5 | 72 | 0.2544 | 0.4010 | 0.2544 |
No log | 4.625 | 74 | 0.2597 | 0.3835 | 0.2597 |
No log | 4.75 | 76 | 0.2622 | 0.3893 | 0.2622 |
No log | 4.875 | 78 | 0.2879 | 0.3962 | 0.2879 |
No log | 5.0 | 80 | 0.2944 | 0.4007 | 0.2944 |
No log | 5.125 | 82 | 0.2653 | 0.3953 | 0.2653 |
No log | 5.25 | 84 | 0.2441 | 0.3922 | 0.2441 |
No log | 5.375 | 86 | 0.2428 | 0.4033 | 0.2428 |
No log | 5.5 | 88 | 0.2581 | 0.4593 | 0.2581 |
No log | 5.625 | 90 | 0.2908 | 0.4953 | 0.2908 |
No log | 5.75 | 92 | 0.2948 | 0.4521 | 0.2948 |
No log | 5.875 | 94 | 0.2783 | 0.3762 | 0.2783 |
No log | 6.0 | 96 | 0.2471 | 0.3316 | 0.2471 |
No log | 6.125 | 98 | 0.2369 | 0.3492 | 0.2369 |
No log | 6.25 | 100 | 0.2362 | 0.3548 | 0.2362 |
No log | 6.375 | 102 | 0.2417 | 0.3613 | 0.2417 |
No log | 6.5 | 104 | 0.2591 | 0.4177 | 0.2591 |
No log | 6.625 | 106 | 0.2639 | 0.4581 | 0.2639 |
No log | 6.75 | 108 | 0.2534 | 0.4358 | 0.2534 |
No log | 6.875 | 110 | 0.2433 | 0.4075 | 0.2433 |
No log | 7.0 | 112 | 0.2434 | 0.3823 | 0.2434 |
No log | 7.125 | 114 | 0.2521 | 0.3648 | 0.2521 |
No log | 7.25 | 116 | 0.2750 | 0.3827 | 0.2750 |
No log | 7.375 | 118 | 0.2989 | 0.3637 | 0.2989 |
No log | 7.5 | 120 | 0.2984 | 0.3630 | 0.2984 |
No log | 7.625 | 122 | 0.2963 | 0.3628 | 0.2963 |
No log | 7.75 | 124 | 0.2861 | 0.3757 | 0.2861 |
No log | 7.875 | 126 | 0.2762 | 0.3896 | 0.2762 |
No log | 8.0 | 128 | 0.2661 | 0.4135 | 0.2661 |
No log | 8.125 | 130 | 0.2529 | 0.4042 | 0.2529 |
No log | 8.25 | 132 | 0.2492 | 0.4148 | 0.2492 |
No log | 8.375 | 134 | 0.2525 | 0.4679 | 0.2525 |
No log | 8.5 | 136 | 0.2600 | 0.4853 | 0.2600 |
No log | 8.625 | 138 | 0.2656 | 0.4866 | 0.2656 |
No log | 8.75 | 140 | 0.2658 | 0.4866 | 0.2658 |
No log | 8.875 | 142 | 0.2693 | 0.4694 | 0.2693 |
No log | 9.0 | 144 | 0.2682 | 0.4416 | 0.2682 |
No log | 9.125 | 146 | 0.2635 | 0.4304 | 0.2635 |
No log | 9.25 | 148 | 0.2593 | 0.4140 | 0.2593 |
No log | 9.375 | 150 | 0.2591 | 0.4029 | 0.2591 |
No log | 9.5 | 152 | 0.2617 | 0.4082 | 0.2617 |
No log | 9.625 | 154 | 0.2621 | 0.4026 | 0.2621 |
No log | 9.75 | 156 | 0.2609 | 0.4026 | 0.2609 |
No log | 9.875 | 158 | 0.2598 | 0.4029 | 0.2598 |
No log | 10.0 | 160 | 0.2596 | 0.4029 | 0.2596 |
Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 4
Model tree for salbatarni/arabert_cross_relevance_task3_fold3
Base model
aubmindlab/bert-base-arabertv02