salbatarni's picture
End of training
07fb0f9 verified
|
raw
history blame
7.3 kB
---
base_model: aubmindlab/bert-base-arabertv02
tags:
- generated_from_trainer
model-index:
- name: arabert_cross_relevance_task4_fold1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# arabert_cross_relevance_task4_fold1
This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1626
- Qwk: 0.0272
- Mse: 0.1626
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
|:-------------:|:------:|:----:|:---------------:|:------:|:------:|
| No log | 0.1176 | 2 | 0.6734 | 0.0010 | 0.6734 |
| No log | 0.2353 | 4 | 0.1546 | 0.0127 | 0.1546 |
| No log | 0.3529 | 6 | 0.1344 | 0.0033 | 0.1344 |
| No log | 0.4706 | 8 | 0.2292 | 0.0185 | 0.2292 |
| No log | 0.5882 | 10 | 0.2260 | 0.0185 | 0.2260 |
| No log | 0.7059 | 12 | 0.1786 | 0.0273 | 0.1786 |
| No log | 0.8235 | 14 | 0.1782 | 0.0359 | 0.1782 |
| No log | 0.9412 | 16 | 0.1951 | 0.0339 | 0.1951 |
| No log | 1.0588 | 18 | 0.2431 | 0.0300 | 0.2431 |
| No log | 1.1765 | 20 | 0.2607 | 0.0228 | 0.2607 |
| No log | 1.2941 | 22 | 0.1938 | 0.0332 | 0.1938 |
| No log | 1.4118 | 24 | 0.1436 | 0.0511 | 0.1436 |
| No log | 1.5294 | 26 | 0.1294 | 0.0733 | 0.1294 |
| No log | 1.6471 | 28 | 0.1285 | 0.0553 | 0.1285 |
| No log | 1.7647 | 30 | 0.1515 | 0.0273 | 0.1515 |
| No log | 1.8824 | 32 | 0.1764 | 0.0273 | 0.1764 |
| No log | 2.0 | 34 | 0.1880 | 0.0273 | 0.1880 |
| No log | 2.1176 | 36 | 0.1700 | 0.0254 | 0.1700 |
| No log | 2.2353 | 38 | 0.1359 | 0.0273 | 0.1359 |
| No log | 2.3529 | 40 | 0.1300 | 0.0307 | 0.1300 |
| No log | 2.4706 | 42 | 0.1359 | 0.0304 | 0.1359 |
| No log | 2.5882 | 44 | 0.1557 | 0.0319 | 0.1557 |
| No log | 2.7059 | 46 | 0.1602 | 0.0335 | 0.1602 |
| No log | 2.8235 | 48 | 0.1456 | 0.0423 | 0.1456 |
| No log | 2.9412 | 50 | 0.1501 | 0.0339 | 0.1501 |
| No log | 3.0588 | 52 | 0.1611 | 0.0339 | 0.1611 |
| No log | 3.1765 | 54 | 0.1440 | 0.0355 | 0.1440 |
| No log | 3.2941 | 56 | 0.1348 | 0.0441 | 0.1348 |
| No log | 3.4118 | 58 | 0.1332 | 0.0475 | 0.1332 |
| No log | 3.5294 | 60 | 0.1443 | 0.0458 | 0.1443 |
| No log | 3.6471 | 62 | 0.1652 | 0.0389 | 0.1652 |
| No log | 3.7647 | 64 | 0.1647 | 0.0458 | 0.1647 |
| No log | 3.8824 | 66 | 0.1513 | 0.0529 | 0.1513 |
| No log | 4.0 | 68 | 0.1475 | 0.0603 | 0.1475 |
| No log | 4.1176 | 70 | 0.1571 | 0.0510 | 0.1571 |
| No log | 4.2353 | 72 | 0.1593 | 0.0529 | 0.1593 |
| No log | 4.3529 | 74 | 0.1445 | 0.0510 | 0.1445 |
| No log | 4.4706 | 76 | 0.1337 | 0.0675 | 0.1337 |
| No log | 4.5882 | 78 | 0.1314 | 0.0614 | 0.1314 |
| No log | 4.7059 | 80 | 0.1364 | 0.0516 | 0.1364 |
| No log | 4.8235 | 82 | 0.1610 | 0.0406 | 0.1610 |
| No log | 4.9412 | 84 | 0.1875 | 0.0355 | 0.1875 |
| No log | 5.0588 | 86 | 0.1836 | 0.0335 | 0.1836 |
| No log | 5.1765 | 88 | 0.1626 | 0.0389 | 0.1626 |
| No log | 5.2941 | 90 | 0.1440 | 0.0493 | 0.1440 |
| No log | 5.4118 | 92 | 0.1353 | 0.0939 | 0.1353 |
| No log | 5.5294 | 94 | 0.1367 | 0.1075 | 0.1367 |
| No log | 5.6471 | 96 | 0.1399 | 0.0853 | 0.1399 |
| No log | 5.7647 | 98 | 0.1521 | 0.0470 | 0.1521 |
| No log | 5.8824 | 100 | 0.1665 | 0.0352 | 0.1665 |
| No log | 6.0 | 102 | 0.1631 | 0.0372 | 0.1631 |
| No log | 6.1176 | 104 | 0.1511 | 0.0372 | 0.1511 |
| No log | 6.2353 | 106 | 0.1430 | 0.0463 | 0.1430 |
| No log | 6.3529 | 108 | 0.1385 | 0.0708 | 0.1385 |
| No log | 6.4706 | 110 | 0.1378 | 0.1029 | 0.1378 |
| No log | 6.5882 | 112 | 0.1410 | 0.0775 | 0.1410 |
| No log | 6.7059 | 114 | 0.1514 | 0.0515 | 0.1514 |
| No log | 6.8235 | 116 | 0.1742 | 0.0351 | 0.1742 |
| No log | 6.9412 | 118 | 0.1831 | 0.0317 | 0.1831 |
| No log | 7.0588 | 120 | 0.1684 | 0.0347 | 0.1684 |
| No log | 7.1765 | 122 | 0.1531 | 0.0652 | 0.1531 |
| No log | 7.2941 | 124 | 0.1443 | 0.0679 | 0.1443 |
| No log | 7.4118 | 126 | 0.1417 | 0.0749 | 0.1417 |
| No log | 7.5294 | 128 | 0.1432 | 0.0618 | 0.1432 |
| No log | 7.6471 | 130 | 0.1495 | 0.0614 | 0.1495 |
| No log | 7.7647 | 132 | 0.1521 | 0.0495 | 0.1521 |
| No log | 7.8824 | 134 | 0.1575 | 0.0420 | 0.1575 |
| No log | 8.0 | 136 | 0.1621 | 0.0415 | 0.1621 |
| No log | 8.1176 | 138 | 0.1649 | 0.0360 | 0.1649 |
| No log | 8.2353 | 140 | 0.1614 | 0.0397 | 0.1614 |
| No log | 8.3529 | 142 | 0.1589 | 0.0415 | 0.1589 |
| No log | 8.4706 | 144 | 0.1604 | 0.0397 | 0.1604 |
| No log | 8.5882 | 146 | 0.1587 | 0.0420 | 0.1587 |
| No log | 8.7059 | 148 | 0.1531 | 0.0457 | 0.1531 |
| No log | 8.8235 | 150 | 0.1511 | 0.0515 | 0.1511 |
| No log | 8.9412 | 152 | 0.1466 | 0.0614 | 0.1466 |
| No log | 9.0588 | 154 | 0.1458 | 0.0514 | 0.1458 |
| No log | 9.1765 | 156 | 0.1471 | 0.0514 | 0.1471 |
| No log | 9.2941 | 158 | 0.1511 | 0.0495 | 0.1511 |
| No log | 9.4118 | 160 | 0.1570 | 0.0438 | 0.1570 |
| No log | 9.5294 | 162 | 0.1612 | 0.0290 | 0.1612 |
| No log | 9.6471 | 164 | 0.1642 | 0.0272 | 0.1642 |
| No log | 9.7647 | 166 | 0.1639 | 0.0272 | 0.1639 |
| No log | 9.8824 | 168 | 0.1630 | 0.0272 | 0.1630 |
| No log | 10.0 | 170 | 0.1626 | 0.0272 | 0.1626 |
### Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1